Description Usage Arguments Value Author(s) See Also Examples
This function takes a TNA object and returns the results of the GSEA analysis over a list of regulons in a transcriptional network (with multiple hypothesis testing corrections).
1 2 3 |
object |
a preprocessed object of class 'TNA' |
pValueCutoff |
a single numeric value specifying the cutoff for p-values considered significant. |
pAdjustMethod |
a single character value specifying the p-value adjustment method to be used (see 'p.adjust' for details). |
minRegulonSize |
a single integer or numeric value specifying the minimum number of elements in a regulon that must map to elements of the gene universe. Gene sets with fewer than this number are removed from the analysis. |
sizeFilterMethod |
a single character value specifying the use of the 'minRegulonSize' argument, which is applyed to regulon's positive and negative targets. Options: "posANDneg", "posORneg", "posPLUSneg". For "posANDneg", the number of both positive and negative targets should be > 'minRegulonSize'; for "posORneg", the number of either positive or negative targets should be > 'minRegulonSize'; and for "posPLUSneg", the number of all targets should be > 'minRegulonSize'. |
nPermutations |
a single integer or numeric value specifying the number of permutations for deriving p-values in GSEA. |
exponent |
a single integer or numeric value used in weighting phenotypes in GSEA (see 'gseaScores' function at HTSanalyzeR). |
tnet |
a single character value specifying which transcriptional network should to used to compute the GSEA analysis. Options: "dpi" and "ref". |
orderAbsValue |
a single logical value indicating whether the values should be converted to absolute values and then ordered (if TRUE), or ordered as they are (if FALSE). |
tfs |
an optional vector with transcription factor identifiers. |
verbose |
a single logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE). |
a data frame in the slot "results", see 'gsea1' option in
tna.get
.
Mauro Castro, Xin Wang
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | data(tniData)
data(tnaData)
## Not run:
rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)
rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)
rtna <- tni2tna.preprocess(rtni, phenotype=tnaData$phenotype,
hits=tnaData$hits, phenoIDs=tnaData$phenoIDs)
#run GSEA1 analysis pipeline
rtna <- tna.gsea1(rtna)
#get results
tna.get(rtna, what="gsea1")
# run parallel version with SNOW package!
library(snow)
options(cluster=snow::makeCluster(3, "SOCK"))
rtna <- tna.gsea1(rtna)
stopCluster(getOption("cluster"))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.