biplot: Draw a bi-plot, comparing 2 selected principal components /...

Description Usage Arguments Details Value Author(s) Examples

View source: R/biplot.R

Description

Draw a bi-plot, comparing 2 selected principal components / eigenvectors.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
biplot(
  pcaobj,
  x = "PC1",
  y = "PC2",
  showLoadings = FALSE,
  ntopLoadings = 5,
  showLoadingsNames = if (showLoadings) TRUE else FALSE,
  colLoadingsNames = "black",
  sizeLoadingsNames = 3,
  boxedLoadingsNames = TRUE,
  fillBoxedLoadings = alpha("white", 1/4),
  drawConnectorsLoadings = TRUE,
  widthConnectorsLoadings = 0.5,
  colConnectorsLoadings = "grey50",
  lengthLoadingsArrowsFactor = 1.5,
  colLoadingsArrows = "black",
  widthLoadingsArrows = 0.5,
  alphaLoadingsArrow = 1,
  colby = NULL,
  colkey = NULL,
  colLegendTitle = if (!is.null(colby)) colby else NULL,
  singlecol = NULL,
  shape = NULL,
  shapekey = NULL,
  shapeLegendTitle = if (!is.null(shape)) shape else NULL,
  pointSize = 3,
  legendPosition = "none",
  legendLabSize = 12,
  legendTitleSize = 14,
  legendIconSize = 5,
  encircle = FALSE,
  encircleFill = TRUE,
  encircleFillKey = NULL,
  encircleAlpha = 1/4,
  encircleLineSize = 0.25,
  encircleLineCol = NULL,
  ellipse = FALSE,
  ellipseConf = 0.95,
  ellipseFill = TRUE,
  ellipseFillKey = NULL,
  ellipseAlpha = 1/4,
  ellipseLineSize = 0.25,
  ellipseLineCol = NULL,
  xlim = if (showLoadings) c(min(pcaobj$rotated[, x]) - 5, max(pcaobj$rotated[, x]) +
    5) else c(min(pcaobj$rotated[, x]) - 1, max(pcaobj$rotated[, x]) + 1),
  ylim = if (showLoadings) c(min(pcaobj$rotated[, y]) - 5, max(pcaobj$rotated[, y]) +
    5) else c(min(pcaobj$rotated[, y]) - 1, max(pcaobj$rotated[, y]) + 1),
  lab = rownames(pcaobj$metadata),
  labSize = 3,
  labhjust = 1.5,
  labvjust = 0,
  boxedLabels = FALSE,
  selectLab = NULL,
  drawConnectors = TRUE,
  widthConnectors = 0.5,
  colConnectors = "grey50",
  xlab = paste0(x, ", ", round(pcaobj$variance[x], digits = 2), "% variation"),
  xlabAngle = 0,
  xlabhjust = 0.5,
  xlabvjust = 0.5,
  ylab = paste0(y, ", ", round(pcaobj$variance[y], digits = 2), "% variation"),
  ylabAngle = 0,
  ylabhjust = 0.5,
  ylabvjust = 0.5,
  axisLabSize = 16,
  title = "",
  subtitle = "",
  caption = "",
  titleLabSize = 16,
  subtitleLabSize = 12,
  captionLabSize = 12,
  hline = NULL,
  hlineType = "longdash",
  hlineCol = "black",
  hlineWidth = 0.4,
  vline = NULL,
  vlineType = "longdash",
  vlineCol = "black",
  vlineWidth = 0.4,
  gridlines.major = TRUE,
  gridlines.minor = TRUE,
  borderWidth = 0.8,
  borderColour = "black",
  returnPlot = TRUE
)

Arguments

pcaobj

Object of class 'pca' created by pca().

x

A principal component to plot on x-axis. All principal component names are stored in pcaobj$label.

y

A principal component to plot on y-axis. All principal component names are stored in pcaobj$label.

showLoadings

Logical, indicating whether or not to overlay variable loadings.

ntopLoadings

If showLoadings == TRUE, select this many variables based on absolute ordered variable loading for each PC in the biplot. As a result of looking across 2 PCs, it can occur whereby greater than this number are actually displayed.

showLoadingsNames

Logical, indicating to show variable loadings names or not.

colLoadingsNames

If 'showLoadings == TRUE', colour of text labels.

sizeLoadingsNames

If 'showLoadings == TRUE', size of text labels.

boxedLoadingsNames

Logical, if 'showLoadings == TRUE', draw text labels in boxes.

fillBoxedLoadings

When 'boxedLoadingsNames == TRUE', this controls the background fill of the boxes. To control both the fill and transparency, user can specify a value of the form 'alpha(<colour>, <alpha>)'.

drawConnectorsLoadings

If 'showLoadings == TRUE', draw line connectors to the variable loadings arrows in order to fit more labels in the plot space.

widthConnectorsLoadings

If 'showLoadings == TRUE', width of the line connectors drawn to the variable loadings arrows.

colConnectorsLoadings

If 'showLoadings == TRUE', colour of the line connectors drawn to the variable loadings arrows.

lengthLoadingsArrowsFactor

If 'showLoadings == TRUE', multiply the internally-determined length of the variable loadings arrows by this factor.

colLoadingsArrows

If showLoadings == TRUE, colour of the variable loadings arrows.

widthLoadingsArrows

If showLoadings == TRUE, width of the variable loadings arrows.

alphaLoadingsArrow

If showLoadings == TRUE, colour transparency of the variable loadings arrows.

colby

If NULL, all points will be coloured differently. If not NULL, value is assumed to be a column name in pcaobj$metadata relating to some grouping/categorical variable.

colkey

Vector of name-value pairs relating to value passed to 'col', e.g., c(A='forestgreen', B='gold').

colLegendTitle

Title of the legend for the variable specified by 'colby'.

singlecol

If specified, all points will be shaded by this colour. Overrides 'col'.

shape

If NULL, all points will be have the same shape. If not NULL, value is assumed to be a column name in pcaobj$metadata relating to some grouping/categorical variable.

shapekey

Vector of name-value pairs relating to value passed to 'shape', e.g., c(A=10, B=21).

shapeLegendTitle

Title of the legend for the variable specified by 'shape'.

pointSize

Size of plotted points.

legendPosition

Position of legend ('top', 'bottom', 'left', 'right', 'none').

legendLabSize

Size of plot legend text.

legendTitleSize

Size of plot legend title text.

legendIconSize

Size of plot legend icons / symbols.

encircle

Logical, indicating whether to draw a polygon around the groups specified by 'colby'.

encircleFill

Logical, if 'encircle == TRUE', this determines whether to fill the encircled region or not.

encircleFillKey

Vector of name-value pairs relating to value passed to 'encircleFill', e.g., c(A='forestgreen', B='gold'). If NULL, the fill is controlled by whatever has already been used for 'colby' / 'colkey'.

encircleAlpha

Alpha for purposes of controlling colour transparency of the encircled region. Used when 'encircle == TRUE'.

encircleLineSize

Line width of the encircled line when 'encircle == TRUE'.

encircleLineCol

Colour of the encircled line when 'encircle == TRUE'.

ellipse

Logical, indicating whether to draw a stat ellipse around the groups specified by 'colby'.

ellipseConf

Confidence intervals of the stat ellipses when ellipse == TRUE.

ellipseFill

Logical, if 'ellipse == TRUE', this determines whether to fill the region or not.

ellipseFillKey

Vector of name-value pairs relating to value passed to 'ellipseFill', e.g., c(A='forestgreen', B='gold'). If NULL, the fill is controlled by whatever has already been used for 'colby' / 'colkey'.

ellipseAlpha

Alpha for purposes of controlling colour transparency of the ellipse region. Used when 'ellipse == TRUE'.

ellipseLineSize

Line width of the ellipse line when 'ellipse == TRUE'.

ellipseLineCol

Colour of the ellipse line when 'ellipse == TRUE'.

xlim

Limits of the x-axis.

ylim

Limits of the y-axis.

lab

A vector containing labels to add to the plot.

labSize

Size of labels.

labhjust

Horizontal adjustment of label.

labvjust

Vertical adjustment of label.

boxedLabels

Logical, draw text labels in boxes.

selectLab

A vector containing a subset of lab to plot.

drawConnectors

Logical, indicating whether or not to connect plot labels to their corresponding points by line connectors.

widthConnectors

Line width of connectors.

colConnectors

Line colour of connectors.

xlab

Label for x-axis.

xlabAngle

Rotation angle of x-axis labels.

xlabhjust

Horizontal adjustment of x-axis labels.

xlabvjust

Vertical adjustment of x-axis labels.

ylab

Label for y-axis.

ylabAngle

Rotation angle of y-axis labels.

ylabhjust

Horizontal adjustment of y-axis labels.

ylabvjust

Vertical adjustment of y-axis labels.

axisLabSize

Size of x- and y-axis labels.

title

Plot title.

subtitle

Plot subtitle.

caption

Plot caption.

titleLabSize

Size of plot title.

subtitleLabSize

Size of plot subtitle.

captionLabSize

Size of plot caption.

hline

Draw one or more horizontal lines passing through this/these values on y-axis. For single values, only a single numerical value is necessary. For multiple lines, pass these as a vector, e.g., c(60,90).

hlineType

Line type for hline ('blank', 'solid', 'dashed', 'dotted', 'dotdash', 'longdash', 'twodash').

hlineCol

Colour of hline.

hlineWidth

Width of hline.

vline

Draw one or more vertical lines passing through this/these values on x-axis. For single values, only a single numerical value is necessary. For multiple lines, pass these as a vector, e.g., c(60,90).

vlineType

Line type for vline ('blank', 'solid', 'dashed', 'dotted', 'dotdash', 'longdash', 'twodash').

vlineCol

Colour of vline.

vlineWidth

Width of vline.

gridlines.major

Logical, indicating whether or not to draw major gridlines.

gridlines.minor

Logical, indicating whether or not to draw minor gridlines.

borderWidth

Width of the border on the x and y axes.

borderColour

Colour of the border on the x and y axes.

returnPlot

Logical, indicating whether or not to return the plot object.

Details

Draw a bi-plot, comparing 2 selected principal components / eigenvectors.

Value

A ggplot2 object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
  options(scipen=10)
  options(digits=6)

  col <- 20
  row <- 20000
  mat1 <- matrix(
    rexp(col*row, rate = 0.1),
    ncol = col)
  rownames(mat1) <- paste0('gene', 1:nrow(mat1))
  colnames(mat1) <- paste0('sample', 1:ncol(mat1))

  mat2 <- matrix(
  rexp(col*row, rate = 0.1),
    ncol = col)
  rownames(mat2) <- paste0('gene', 1:nrow(mat2))
  colnames(mat2) <- paste0('sample', (ncol(mat1)+1):(ncol(mat1)+ncol(mat2)))

  mat <- cbind(mat1, mat2)

  metadata <- data.frame(row.names = colnames(mat))
  metadata$Group <- rep(NA, ncol(mat))
  metadata$Group[seq(1,40,2)] <- 'A'
  metadata$Group[seq(2,40,2)] <- 'B'
  metadata$CRP <- sample.int(100, size=ncol(mat), replace=TRUE)
  metadata$ESR <- sample.int(100, size=ncol(mat), replace=TRUE)

  p <- pca(mat, metadata = metadata, removeVar = 0.1)

  biplot(p)

  biplot(p, colby = 'Group', shape = 'Group')

  biplot(p, colby = 'Group', colkey = c(A = 'forestgreen', B = 'gold'),
    legendPosition = 'right')

  biplot(p, colby = 'Group', colkey = c(A='forestgreen', B='gold'),
    shape = 'Group', shapekey = c(A=10, B=21), legendPosition = 'bottom')

PCAtools documentation built on Nov. 8, 2020, 8:17 p.m.