Description Usage Arguments Details Value Author(s) See Also Examples
tool.graph.degree
finds in-degree and out-degree statistics of the
network by using edge lists of the nodes. It also obtains the strenghts
of the degrees by using edge weights.
1 | tool.graph.degree(node2edge, weights)
|
node2edge |
edge list of each node |
weights |
strengths of the edges |
Degree of a node means number of the neighbors belonging to that node. Hence, out-degree statistics are applicable for tail nodes; while in-degree statistics are applicable for the heads.
res |
a data list including degree and its strength for each node |
Ville-Petteri Makinen
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | job.kda <- list()
job.kda$label<-"HDLC"
## parent folder for results
job.kda$folder<-"Results"
## Input a network
## columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
## module file:
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
## "0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
## The searching depth for the KDA
job.kda$depth<-1
## 0 means we do not consider the directions of the regulatory interactions
## while 1 is opposite.
job.kda$direction <- 1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests
## kda.start() process takes long time while seeking hubs in the given net
## Here, we used a very small subset of the module list (1st 10 mods
## from the original module file):
moddata <- tool.read(job.kda$modfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
## save this to a temporary file and set its path as new job.kda$modfile:
tool.save(moddata, "subsetof.supersets.txt")
job.kda$modfile <- "subsetof.supersets.txt"
job.kda <- kda.configure(job.kda)
## Import data for weighted key driver analysis:
## Import topology.
edges <- kda.start.edges(job.kda)
## Create an indexed graph structure.
tails <- as.character(edges$TAIL)
heads <- as.character(edges$HEAD)
wdata <- as.double(edges$WEIGHT)
nedges <- length(tails)
# Create factorized representation.
labels <- as.character(c(tails, heads))
labels <- as.factor(labels)
labelsT <- as.integer(labels[1:nedges])
labelsH <- as.integer(labels[(nedges+1):(2*nedges)])
# Create edge lists.
nodnames <- levels(labels)
nnodes <- length(nodnames)
elistT <- tool.graph.list(labelsT, nnodes)
elistH <- tool.graph.list(labelsH, nnodes)
## Collect edge degree stats:
res <- list()
res$nodes <- as.character(nodnames)
res$outstats <- tool.graph.degree(elistT, wdata) ## out degrees
res$instats <- tool.graph.degree(elistH, wdata) ## in degrees
res$stats <- (res$outstats + res$instats)
## Remove the temporary files used for the test:
file.remove("subsetof.supersets.txt")
|
Writing to file...
Saved 1346 rows in 'subsetof.supersets.txt'.
[1] "subsetof.supersets.txt"
KDA Version:12.7.2015
Parameters:
Search depth: 1
Search direction: 1
Maximum overlap: 0.33
Minimum module size: 20
Minimum degree: automatic
Maximum degree: automatic
Edge factor: 0
Random seed: 1
Importing edges...
TAIL HEAD WEIGHT
Length:140663 Length:140663 Min. :1
Class :character Class :character 1st Qu.:1
Mode :character Mode :character Median :1
Mean :1
3rd Qu.:1
Max. :1
[1] TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.