Description Usage Arguments Details Value Author(s) References See Also Examples
ssea.prepare
prepares a database that includes hierarchical for
modules, i.e. it collects gene list and unique marker list of the modules
for MSEA process
1 | ssea.prepare(job)
|
job |
a data list with the following components: modules: module identities as characters. genesgene: identities as characters. loci: marker identities as characters. moddata: preprocessed module data (indexed identities). gendata: preprocessed mapping data (indexed identities). locdata: preprocessed marker data (indexed identities). mingenes: minimum module size allowed. maxgenes: maximum module size allowed. maxoverlap: maximum module overlap allowed (1.0 to skip). quantiles: quantile points for test statistic. |
ssea.prepare
removes extreme-sized modules, constructs a
hierarchical representation of genes and modules, obtains hit counts for
markers, and returns the finalized module, genes, markers, database
information.
job |
an updated data list with the following components: modules: finalized module names. moddata: finalized module data. gendata: finalized mapping data. locdata: finalized marker data. quantiles: verified quantile points. database$modulesizes: gene counts for modules. database$modulelengths: distinct markers counts for modules. database$moduledensities: ratio between distinct and non-distinct markers. database$genesizeslocus: count for each gene. database$module2genes: gene lists for each module. database$gene2locilocus: lists for each gene. database$locus2row: indices in the marker data frame for each marker. database$observed: matrix of observed counts of values that exceed each quantile point for each marker. database$expected: 1.0 - quantile points. |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
ssea.analyze
, ssea.control
,
ssea.finish
, ssea.start
,
ssea2kda
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000
## ssea.start() process takes long time while merging the genes sharing high
## amounts of markers (e.g. loci). it is performed with full module list in
## the vignettes. Here, we used a very subset of the module list (1st 10 mods
## from the original module file) and we collected the corresponding genes
## and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]
## save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
## run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
## Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")
|
Writing to file...
Saved 1744 rows in 'subsetof.coexpr.modules.txt'.
[1] "subsetof.coexpr.modules.txt"
Writing to file...
Saved 7376 rows in 'subsetof.genfile.txt'.
[1] "subsetof.genfile.txt"
Writing to file...
Saved 7070 rows in 'subsetof.marfile.txt'.
[1] "subsetof.marfile.txt"
MSEA Version:01.04.2016
Parameters:
Permutation type: gene
Permutations: 100
Random seed: 1
Minimum gene count: 10
Maximum gene count: 500
Maximum overlap between genes: 0.33
Importing modules...
MODULE DESCR
Length:20 Length:20
Class :character Class :character
Mode :character Mode :character
MODULE GENE
Length:1744 Length:1744
Class :character Class :character
Mode :character Mode :character
Importing marker values...
MARKER VALUE
Length:7070 Min. : 0.8094
Class :character 1st Qu.: 0.9531
Mode :character Median : 1.1685
Mean : 1.8574
3rd Qu.: 1.5491
Max. :323.0100
Importing mapping data...
GENE MARKER
Length:7376 Length:7376
Class :character Class :character
Mode :character Mode :character
Merging genes containing shared markers...
16110 comparisons
7260 comparisons
7021 comparisons
Job: 0.7925262 Mb
Preparing data structures...
Job: 1.21257 Mb
[1] TRUE
[1] TRUE
[1] TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.