Nothing
## for motifStack package
.globals <- new.env(parent = emptyenv())
#######
#### functions hidden to the user
####################################
.findPerl <- function(perl, verbose = "FALSE"){
errorMsg <- "perl executable not found. Use perl= argument to specify the correct path."
if (missing(perl))
{
perl = "perl"
}
perl = Sys.which(perl)
if (perl=="" || perl=="perl")
stop(errorMsg)
if (.Platform$OS == "windows") {
if (length(grep("rtools", tolower(perl))) > 0) {
perl.ftype <- shell("ftype perl", intern = TRUE)
if (length(grep("^perl=", perl.ftype)) > 0) {
perl <- sub('^perl="([^"]*)".*', "\\1", perl.ftype)
}
}
}
if (verbose) cat("Using perl at", perl, "\n")
perl
}
.ClustalChecks <- function(ClustalCommand="clustalo") {
#Check for clustalo in the PATH
message("Checking if clustalo is in the PATH...")
ClustalCommand <- Sys.which(ClustalCommand)
if(ClustalCommand=="") {
warning("Clustal Omega is not in the PATH:\nYou can either change clustalo command using lmParams function or use the web service. See ?setup")
return()
}
message("Checking clustalo Version...")
ClustalVersion <- system(paste(ClustalCommand , "--version") , intern=TRUE)
if(!grepl("^1.2" , ClustalVersion))
warning("Clustal Omega version could be not compatible. LowMACA was tested on 1.2.x")
}
.PerlModuleChecks <- function(stop=FALSE , perl="perl"){
if(stop)
myFunc <- stop
else
myFunc <- warning
message("Checking perl installation...")
perl <- tryCatch(.findPerl(perl=perl) , error=function(e) "no perl")
if(perl=="no perl"){
warning("perl executable is not in the PATH. Remember to install perl and its modules XML::Simple and LWP if you want to use web service aligner.")
return()
}
message("Checking perl modules XML::Simple and LWP...")
checkXML <- system( paste(perl , "-MXML::Simple -e 1") , intern=TRUE)
failed <- !is.null(attr(checkXML, 'status')) && attr(checkXML, 'status') != 0
if(failed)
myFunc(paste( "XML::Simple module for perl is not installed.
If you don't want to install a local clustal omega and use the web service, XML::Simple is required", checkXML , sep="\n"))
perl <- .findPerl()
checkLWP <- system( paste(perl , "-MLWP -e 1") , intern=TRUE)
failed <- !is.null(attr(checkLWP, 'status')) && attr(checkLWP, 'status') != 0
if(failed)
myFunc(paste( "LWP module for perl is not installed.
If you don't want to install a local clustal omega and use the web service, LWP is required", checkLWP , sep="\n"))
}
.myTrimmer <- function (object, ...) {
s <- sub("^[\t\n\f\r ]*", "", as.character(object))
s <- sub("[\t\n\f\r ]*$", "", s)
s
}
showTumorType <- function() {
mycgds <- cgdsr::CGDS("http://www.cbioportal.org/")
all_cancer_studies <- cgdsr::getCancerStudies(mycgds)[,c(1,2)]
all_cancer_studies2 <- unique(
data.frame(
Code=sapply(all_cancer_studies$cancer_study_id
, function(x) strsplit(x , "_")[[1]][1])
, Full_Name=sapply(all_cancer_studies$name
, function(x) .myTrimmer(strsplit(x , "\\(")[[1]][1]))
))
all_cancer_studies3 <- aggregate(Full_Name~Code, all_cancer_studies2
, FUN=function(x) {paste(x , collapse="|")})
out <- as.character(all_cancer_studies3$Code)
names(out) <- all_cancer_studies3$Full_Name
return(out)
}
.checkGene_to_geneID <- function(genes, myUni, myAlias) {
# This function checks the gene ids provided by the user
# transforming eventual aliases to official HugoSymbols,
# removing duplicated itmes and returning the corresponding EntrezID
myAliasUnmapped <- myAlias[ myAlias$MappedByLowMACA=="no" , ]
myAlias <- myAlias[ myAlias$MappedByLowMACA=="yes" , ]
# make all symbols uppercase in order to avoid
# ambiguities
genes <- toupper(genes)
# good genes are considered when provided as EntrezID or HugoSymbols
good_genes <- c(as.character(myUni$Gene_Symbol),
as.character(myUni$Entrez))
if( all(genes %in% good_genes) ) {
message("All Gene Symbols correct!")
# collect the annotations of id provided as gene symbols
isGeneSymbol <- myUni$Gene_Symbol %in% genes
Official_gs <- myUni[isGeneSymbol, c("Gene_Symbol", "Entrez")]
# collect the annotations of id provided as EntrezID
isEntrez <- as.character(myUni$Entrez) %in% genes
Official_entrez <- myUni[isEntrez, c("Gene_Symbol", "Entrez")]
# merge the two annotations
Official <- rbind(Official_gs, Official_entrez)
Official$Alias <- rep(NA, nrow(Official))
# check for duplicated itmes, in case there are make a
# warning with the duplicated items
if( any(duplicated(Official$Entrez)) )
{
warning("Either there were duplicated Gene Symbols or Entrez IDs
or you put a Gene Symbol along with its Entrez ID:"
, immediate.=TRUE)
message(Official[duplicated(Official$Entrez), ])
}
# remove duplicated items, drop the factors' levels
# and return
Official <- unique(Official[, c("Gene_Symbol", "Entrez")])
Official <- droplevels(Official)
return(Official)
} else {
# collect the annotations of id provided as gene symbols
isGeneSymbol <- myUni$Gene_Symbol %in% genes
Official_gs <- myUni[isGeneSymbol, c("Gene_Symbol", "Entrez")]
# collect the annotations of id provided as EntrezID
isEntrez <- as.character(myUni$Entrez) %in% genes
Official_entrez <- myUni[isEntrez, c("Gene_Symbol", "Entrez") ]
# merge the two annotations
Official <- rbind(Official_gs, Official_entrez)
Official$Alias <- rep(NA, nrow(Official))
# find genes who were not provided as either EntrezID or HugoSymbol
notOfficial <- setdiff(genes, good_genes)
# try to assign them through alias
bad_alias <- setdiff(notOfficial, myAlias$Alias)
if( length(bad_alias)==0 )
{
notOfficial <- lapply(notOfficial, function(x) {
gs <- unique(myAlias[myAlias$Alias==x,"Official_Gene_Symbol"])
isGeneSymbol <- myUni$Gene_Symbol %in% gs
official <- myUni[isGeneSymbol, c("Gene_Symbol", "Entrez")]
official$Alias <- rep(x, nrow(official))
return(official)
})
if( all(sapply(notOfficial, nrow)==1)) {
out <- do.call("rbind", notOfficial)
message("These Genes were reverted to their official Gene Symbol:")
message(out)
out <- rbind(Official, out)
if( any( duplicated(out$Entrez) ) ) {
warning("There were duplicated Gene Symbols or Entrez IDs
or you put a Gene Symbol along with its Entrez ID:"
, immediate.=TRUE)
message(out[duplicated(out$Entrez), ])
}
out <- unique(out[, c("Gene_Symbol", "Entrez")])
out <- droplevels(out)
return(out)
# return(droplevels( unique(out[, c(1, 2)]) ) )
} else {
message("There is an ambiguity with some aliases:")
bad_alias_2 <- sapply(notOfficial, length)!=1
bad_alias_3 <- do.call("rbind", notOfficial[bad_alias_2])
message( bad_alias_3 )
message("Choose a correct Gene Symbol and start over :(")
return( bad_alias_3 )
}
} else {
wrongGenes <- !( bad_alias %in% c(myAliasUnmapped$Official_Gene_Symbol ,
myAliasUnmapped$Alias) )
if( any(wrongGenes) ) {
wrongGenes <- bad_alias[wrongGenes]
message("There are invalid Gene Symbol or Entrez IDs:")
message(wrongGenes)
stop("Check manually and start over :(")
}
unmappedGenes <- ( bad_alias %in% c(myAliasUnmapped$Official_Gene_Symbol ,
myAliasUnmapped$Alias) )
if( any(unmappedGenes) ) {
unmappedGenes <- bad_alias[unmappedGenes]
message("There are valid genes that have not been mapped by LowMACA:")
message(unmappedGenes)
stop("We are sorry, remove these genes and start over :(")
}
}
}
}
#.Trident_Score <- function(origMAlign , cons_mat="BLOSUM62", param=c(1 , 0.5 , 2) ) {
.Trident_Score <- function(origMAlign , cons_mat="BLOSUM62", param=c(1 , 1 , 0) ) {
m <- consensusMatrix(origMAlign)
freq_mat <- pcm2pfm(m)
aminos <- rownames(m)[rownames(m)!='-']
if(cons_mat=="BLOSUM62") {
data("BLOSUM62", envir = environment())
BLOSUM62 <- get("BLOSUM62", envir = environment())
myBLOSUM <- BLOSUM62[aminos , aminos]
} else {
myBLOSUM <- cons_mat[aminos , aminos]
}
### force negative elements on the diagonal to be 0
if(any(diag(myBLOSUM)<0)) {
message('There are some negative elements in the diagonal elements of consensus matrix')
message(diag(myBLOSUM)[diag(myBLOSUM)<0])
message('Forcing them to be zero')
diag(myBLOSUM)[diag(myBLOSUM)<0] <- 0
}
myBLOSUM_valdar <- sapply(aminos , function(col) {
sapply(aminos , function(row) {
myBLOSUM[col , row]/sqrt(myBLOSUM[col , col]*myBLOSUM[row , row])
})
})
#first member
lambda_t <- 1/log2(min(21 , nrow(origMAlign)))
log2freq_mat <- ifelse( is.infinite(log2(freq_mat)) , 0 , log2(freq_mat))
t <- lambda_t*(-colSums(freq_mat*log2freq_mat))
#second member
MyNorm <- function(x) sqrt(sum(x^2))
lambda_r <- 1/( sqrt(20)*(max(myBLOSUM_valdar) - min(myBLOSUM_valdar)) )
r <- sapply(1:ncol(freq_mat) , function(i) {
pos <- freq_mat[ aminos , i]
amin <- names(pos[pos!=0])
if( length(amin)==0 ) {
return(1)
} else if( length(amin)==1 ) {
return(0)
} else {
myBLOSUM_cut <- myBLOSUM_valdar[ , amin]
x_mean <- (1/length(amin))*rowSums(myBLOSUM_cut)
distance <- sum(sapply(1:ncol(myBLOSUM_cut) , function(x) {
eucl <- MyNorm(x_mean-myBLOSUM_cut[ , x])
}))
out <- distance/length(amin)
out <- out*lambda_r
return(out)
}
})
#third member
if( "-" %in% rownames(freq_mat) )
g <- freq_mat["-" , ]
else
g <- 0
#Finally
result <- ((1-t)^param[1])*((1-r)^param[2])*((1-g)^param[3])
return(result)
}
.clustalOAlign <- function(genesData, clustal_cmd, filename , mail , perlCommand, use_hmm, datum){
# # get the protein sequences corresponding to the selected genes
# # from the uniprot_file
# arrange the protein sequences to make a fasta format file
fasta <- c()
seq_names <- rownames(genesData)
if(length(seq_names)>2000 && !is.null(mail))
stop("You cannot evaluate more than 2000 sequences in web mode. Install a local clustalo")
for (i in 1:nrow(genesData)) {
seq_name <- paste( ">", seq_names[i], sep='')
seq <- as.character(genesData[i, 'AMINO_SEQ'])
fasta <- c(fasta, seq_name, seq)
}
# download hmm file
if( use_hmm ) {
hmmFile <- tempfile()
# e.g. http://pfam.xfam.org/family/PF00071/hmm
pfam <- as.character(genesData$Pfam_ID[1])
WebQuery <- paste0('http://pfam.xfam.org/family/', pfam, '/hmm')
if(Sys.info()['sysname']=="Windows")
download.file(WebQuery, destfile=hmmFile , mode="wb")
else
download.file(WebQuery, destfile=hmmFile)
}
# write the fasta file on a temporary file
fastafile <- tempfile()
write.table(fasta, fastafile,
quote=FALSE, row.names=FALSE, col.names=FALSE)
clustalout_clu <- tempfile()
# run clustaomega output in Clustal format
if(nrow(genesData)>2) {
if(is.null(mail)) {
#clustalout_clu <- tempfile()
ClustalOmega <- Sys.which(clustal_cmd)
if(ClustalOmega=="")
stop("Clustal Omega command not found. clustalo is not in your PATH or it was not installed")
#clustal omega pairwise distance matrix
dist_mat <- tempfile()
dist_cmd <- paste("--distmat-out" , dist_mat , sep="=")
if( use_hmm ) {
exec <- paste(ClustalOmega, paste0('--hmm-in=', hmmFile), '--outfmt=clu' , '--percent-id'
, dist_cmd , "--full --force" , '-i', fastafile, '>', clustalout_clu)
}
else {
exec <- paste(ClustalOmega,'--outfmt=clu' , '--percent-id'
, dist_cmd , "--full --force" , '-i', fastafile, '>', clustalout_clu)
}
#Windows doesn't accept the redirection >, so we must use shell
if( Sys.info()['sysname']=="Windows" ) {
exec <- gsub("\\\\" , "/" , exec)
cmdCheck <- shell(exec , intern=TRUE)
} else {
cmdCheck <- system(exec , intern=TRUE)
}
if( use_hmm ) unlink(hmmFile)
#Check if system call to clustalo had 0 exit status
failed <- !is.null(attr(cmdCheck, 'status')) && attr(cmdCheck, 'status') != 0
if(failed)
stop(paste("Alignment with ClustalOmega had non 0 exit status:",cmdCheck , sep="\n"))
if( !(use_hmm | datum) )
{
score <- .scoreMatrix(dist_mat , mail=mail)
} else {
score <- NA
}
aln <- .clustalMatrix(clustalout_clu)
see_aln <- readAAMultipleAlignment(filepath = clustalout_clu
, format="clustal")
if( is.null(filename) ) {
unlink(clustalout_clu)
} else {
file.rename(clustalout_clu, filename)
}
unlink(dist_mat)
unlink(fastafile)
} else {
if( use_hmm ) stop("You cannot evaluate HMM in web mode. Install a local clustalo")
perl <- .findPerl(perl=perlCommand)
package.dir <- system.file(package='LowMACA')
script <- file.path(package.dir,'clustalo_lwp.pl')
mailArgument <- paste("--email" , mail)
webOut <- file.path(tempdir() , "webClustal")
webOutArgument <- paste("--outfile" , shQuote(webOut))
exec <- paste(shQuote(perl)
, shQuote(script)
, "--noguidetreeout --stype protein --dismatout --outfmt clustal"
, mailArgument
, webOutArgument
, shQuote(fastafile)
)
cmdCheck <- system(exec , intern=TRUE)
failed <- !is.null(attr(cmdCheck, 'status')) && attr(cmdCheck, 'status') != 0
if(failed)
stop(paste("Alignment with ClustalOmega had non 0 exit status:",cmdCheck , sep="\n"))
dist_mat <- paste0(webOut , ".pim.pim")
clustalout_clu <- paste0(webOut , ".aln-clustal.clustal")
score <- .scoreMatrix(dist_mat , mail=mail)
aln <- .clustalMatrix(clustalout_clu)
see_aln <- readAAMultipleAlignment(filepath = clustalout_clu
, format="clustal")
if( is.null(filename) ) {
unlink(clustalout_clu)
} else {
file.rename(clustalout_clu, filename)
}
unlink(dist_mat)
unlink(fastafile)
}
} else {
if(nrow(genesData)==1) {
# Fasta length
len <- nchar(as.character(genesData[1, 'AMINO_SEQ']))
aln <- data.frame(Gene_Symbol=rep(genesData[, 'Gene_Symbol'], len)
, Protein=rep(genesData[, 'UNIPROT'])
, Entrez=rep(genesData[, 'Entrez'])
, Align=1:len
, Ref=1:len
)
see_aln <- AAMultipleAlignment(genesData[1, 'AMINO_SEQ'])
score <- NA
# Fasta length
aln <- data.frame(Gene_Symbol=rep(genesData[ , 'Gene_Symbol'] , len)
, domainID=rep(genesData[ , 'Pfam_ID'])
, Entrez=rep(genesData[ , 'Entrez'])
, Envelope_Start=rep(genesData[ , 'Envelope_Start'])
, Envelope_End=rep(genesData[ , 'Envelope_End'] , len)
, Align=1:len
, Ref=1:len
)
score <- NA
} else {
if(is.null(mail)) {
# With a 2 sequence alignment we do not create a distance matrix
ClustalOmega <- Sys.which(clustal_cmd)
if(ClustalOmega=="")
stop("Clustal Omega command not found. clustalo is not in your PATH or it was not installed")
warning("There are less than 3 sequences aligned, so no distance matrix can be calculated"
, immediate.=TRUE)
exec <- paste(ClustalOmega, '--outfmt=clu' , '-i', fastafile, '>', clustalout_clu)
#Windows doesn't accept the redirection with system >, so we must use shell
if( Sys.info()['sysname']=="Windows" ) {
exec <- gsub("\\\\" , "/" , exec)
cmdCheck <- shell(exec , intern=TRUE)
} else {
cmdCheck <- system(exec , intern=TRUE)
}
failed <- !is.null(attr(cmdCheck, 'status')) && attr(cmdCheck, 'status') != 0
if(failed)
stop(paste("Alignment with ClustalOmega had non 0 exit status:",cmdCheck , sep="\n"))
score <- "It is not possible to calculate distance matrix with less than 3 sequences"
aln <- .clustalMatrix(clustalout_clu)
see_aln <- readAAMultipleAlignment(filepath = clustalout_clu
, format="clustal")
if( is.null(filename) ) {
unlink(clustalout_clu)
} else {
file.rename(clustalout_clu, filename)
}
unlink(fastafile)
} else {
perl <- .findPerl(perl=perlCommand)
package.dir <- system.file(package='LowMACA')
script <- file.path(package.dir,'clustalo_lwp.pl')
mailArgument <- paste("--email" , mail)
webOut <- file.path(tempdir() , "webClustal")
webOutArgument <- paste("--outfile" , shQuote(webOut))
exec <- paste(shQuote(perl)
, shQuote(script)
, "--noguidetreeout --stype protein --nodismatout --outfmt clustal"
, mailArgument
, webOutArgument
, shQuote(fastafile)
)
cmdCheck <- system(exec , intern=TRUE)
failed <- !is.null(attr(cmdCheck, 'status')) && attr(cmdCheck, 'status') != 0
if(failed)
stop(paste("Alignment with ClustalOmega had non 0 exit status:",cmdCheck , sep="\n"))
clustalout_clu <- paste0(webOut , ".aln-clustal.clustal")
score <- "It is not possible to calculate distance matrix with less than 3 sequences"
aln <- .clustalMatrix(clustalout_clu)
see_aln <- readAAMultipleAlignment(filepath = clustalout_clu
, format="clustal")
if( is.null(filename) ) {
unlink(clustalout_clu)
} else {
file.rename(clustalout_clu, filename)
}
unlink(fastafile)
}
}
}
return(list(ALIGNMENT=aln, SCORE=score, CLUSTAL=see_aln))
}
.filterMAlign <- function(alignment, genes, datum) {
## ALIGNMENT element
alignment$ALIGNMENT <- droplevels(alignment$ALIGNMENT[alignment$ALIGNMENT$Gene_Symbol %in% genes, ])
## SCORE element
if( !datum ) {
ix <- sort(unlist(lapply(genes, grep, x=rownames(alignment$SCORE$DIST_MAT))))
if( length(ix)>2 ) {
alignment$SCORE$DIST_MAT <- alignment$SCORE$DIST_MAT[ix,ix,drop=FALSE]
alignment$SCORE$SUMMARY_SCORE <- cbind(
MEAN_SIMILARITY=apply(alignment$SCORE$DIST_MAT, 1, mean, na.rm=TRUE)
, MEDIAN_SIMILARITY=apply(alignment$SCORE$DIST_MAT, 1, median, na.rm=TRUE)
, MAX_SIMILARITY=apply(alignment$SCORE$DIST_MAT, 1, max, na.rm=TRUE)
, MIN_SIMILARITY=apply(alignment$SCORE$DIST_MAT, 1, min, na.rm=TRUE)
)
} else {
alignment$SCORE <- "It is not possible to calculate distance matrix with less than 3 sequences"
}
}
## CLUSTAL element
ix <- sort(unlist(lapply(genes, grep, x=alignment$CLUSTAL@unmasked@ranges@NAMES)))
alignment$CLUSTAL <-
as(apply(as.matrix(alignment$CLUSTAL)[ix,,drop=FALSE],1,paste,collapse=''), "AAMultipleAlignment")
## return the filtered alignment
return(alignment)
}
.clustalMatrix <- function(filename){
origMAlign <- readAAMultipleAlignment(filepath = filename , format="clustal")
origMAlign_mat <- Biostrings::as.matrix(origMAlign)
out <- apply(origMAlign_mat, 1 , function(seq) {
match <- rep(NA, length(seq))
ix <- which(seq != '-')
match[ix] <- 1:length(ix)
return(match)
})
colnames(out) <- rownames(origMAlign_mat)
out <- as.data.frame(out)
out$Align <- 1:nrow(out)
out <- melt(out, id.vars='Align')
colnames(out)[2:3] <- c('Seq','Ref')
domainID <- out$Seq
lines_name <- do.call('rbind',
sapply(as.character(out$Seq), strsplit, '\\|'))
rownames(lines_name) <- NULL
envelope <- do.call('rbind', sapply(lines_name[,4], strsplit, ';'))
envelope <- apply(envelope, 2, as.numeric)
lines_name <- data.frame(domainID, lines_name[,1:3], envelope)
colnames(lines_name) <- c('domainID', 'Gene_Symbol', 'Pfam', 'Entrez',
'Envelope_Start', 'Envelope_End')
out <- cbind(lines_name, out[, c('Align', 'Ref')])
out$Ref <- out$Ref + out$Envelope_Start - 1
return(out)
}
#Calculate similarity matrix and some summary statistics
.scoreMatrix <- function(filename , mail){
dist_seq <- read.table(filename , row.names=1 , skip=1)
if(!is.null(mail)) {
rownames(dist_seq) <- dist_seq$V2
dist_seq$V2 <- NULL
}
colnames(dist_seq) <- rownames(dist_seq)
dist_seq <- as.matrix(dist_seq)
diag(dist_seq) <- NA
mean_dist <- rowMeans(dist_seq , na.rm=TRUE)
median_dist <- apply(dist_seq , 1 , function(x) median(x , na.rm=TRUE) )
max_dist <- apply(dist_seq , 1 , function(x) max(x , na.rm=TRUE) )
min_dist <- apply(dist_seq , 1 , function(x) min(x , na.rm=TRUE) )
summary <- data.frame(MEAN_SIMILARITY=mean_dist
, MEDIAN_SIMILARITY=median_dist
, MAX_SIMILARITY=max_dist
, MIN_SIMILARITY=min_dist
)
rownames(summary) <- rownames(dist_seq)
if( any(summary$MAX_SIMILARITY <= 20)) {
warning("There are sequences very dissimilar to the others!
Consider to exclude them because the maximum similarity with any other sequence is less than 20%" , immediate.=TRUE)
message(summary[ summary$MAX_SIMILARITY <= 20 , ])
}
return(list(DIST_MAT=dist_seq , SUMMARY_SCORE=summary))
}
.getGeneMutations <- function(myGenes=myGenes
,parallelize=FALSE
,mutation_type=c("missense", "all", "truncating" , "silent")
,NoSilent=TRUE
,Exonic=TRUE
,tumor_type="all_tumors"
)
{
mycgds <- cgdsr::CGDS("http://www.cbioportal.org/")
all_cancer_studies <- cgdsr::getCancerStudies(mycgds)[,c(1,2)]
mutation_type <- mutation_type[1]
# If I want just silent mutation, this overwrite NoSilent mode
if(mutation_type=="silent") NoSilent=FALSE
if(tumor_type[1]=="all_tumors") {
chosenTumors <- all_cancer_studies[,1]
} else {
chosenTumors <- all_cancer_studies[
grepl( paste(tumor_type , collapse="|")
, all_cancer_studies[,1] , ignore.case=TRUE) , 1]
}
### We don't take data from the most recent pancan atlas
pancan <- grep("_pan_can_atlas_2018" , all_cancer_studies[,1] , value=TRUE)
chosenTumors <- setdiff(chosenTumors , pancan)
if(parallelize) {
applyfun <- mclapply
options('mc.cores'=detectCores())
} else {
applyfun <- lapply
}
out_double <- applyfun(chosenTumors , function(i) {
#for each Cancer Study, fetch the type of alteration (genetic profile)
#to be considered
geneticProfile <- tryCatch({
cgdsr::getGeneticProfiles(mycgds, i)
} , error = function(e) {
url <- paste0(mycgds$.url, "webservice.do?cmd=getGeneticProfiles&&cancer_study_id=", i)
res <- httr::GET(url)
if(res$status_code!=200){
stop(paste("Problems with cBioPortal Connection at" , url))
}
df <- strsplit(unlist(strsplit(httr::content(res) , "\n")) , split="\t")
caseListColnames <- df[[1]]
df <- do.call("rbind" , df[-1])
df <- as.data.frame(df , stringsAsFactors=FALSE)
colnames(df) <- caseListColnames
return(df)
})
# geneticProfile <- geneticProfile[ ,c(1:2)]
sel <- grepl("mutations$" , geneticProfile$genetic_profile_id)
geneticProfile <- geneticProfile[sel, 1]
caseList <- tryCatch({
cgdsr::getCaseLists(mycgds, i)
} , error = function(e) {
url <- paste(mycgds$.url, "webservice.do?cmd=getCaseLists&cancer_study_id=", i, sep = "")
res <- httr::GET(url)
if(res$status_code!=200){
stop(paste("Problems with cBioPortal Connection at" , url))
}
df <- strsplit(unlist(strsplit(httr::content(res) , "\n")) , split="\t")
caseListColnames <- df[[1]]
df <- do.call("rbind" , df[-1])
df <- as.data.frame(df , stringsAsFactors=FALSE)
colnames(df) <- caseListColnames
return(df)
})
toLowCL <- tolower(caseList$case_list_name)
#find if we have any sequenced tumor
sel <- toLowCL=="sequenced tumors"
# sometimes 'Sequenced Tumors' is not the name of the case_list_name for mutations
# If 'Sequenced Tumors' does not exist, try 'Samples with mutation data' first and 'All Tumors' next
if(!any(sel)){
sel <- toLowCL=="samples with mutation data" | toLowCL=="samples with mutation data."
}
if(!any(sel)){
sel <- toLowCL=="all samples"
}
if(!any(sel)){
# print("sel is the problem, line 607")
# print(caseList)
return( list( out=NULL , patients=NULL) )
}
caseListID <- caseList[sel, 1]
tryCatch(
muts <- cgdsr::getMutationData( mycgds
, caseList=caseListID
, geneticProfile=geneticProfile
, genes=as.character(myGenes[ , 'Entrez']))
, error=function(e) message(paste("Impossible to retrive mutations from" , i , "study"))
)
if(!exists("muts")) {
# print("mut is the problem, line 619")
muts <- NULL
patients <- NULL
} else {
if(ncol(muts)!=22) {
# print("mut is the problem, line 624")
muts <- NULL
patients <- NULL
} else {
patientsToSplit <- as.character(caseList[sel, 'case_ids'])
if(!is.character(patientsToSplit) || length(patientsToSplit)==0){
# print("mut is the problem, line 630")
muts <- NULL
patients <- NULL
} else {
patients <- strsplit(patientsToSplit , split=" ")[[1]]
}
}
}
return( list( out=muts , patients=patients) )
})
if(all(sapply(out_double , function(x) is.null(x$out)))) {
message("There are no mutations available for the selected tumor types and genes")
return(list( Mutations=NULL , AbsFreq=NULL ))
}
#These are the number of samples
samples_out <- lapply(1:length(out_double) , function(x) out_double[[x]][["patients"]])
names(samples_out) <- chosenTumors
#Create a set of samples per tumor type and not per study type (ex. brca_tcga and brca_pub will be joined)
chosenTumors_type <- unique(sapply(chosenTumors, function(x) strsplit(x , split="_")[[1]][1]))
npat_type <- c()
for (i in chosenTumors_type) {
selected_tum <- samples_out[grep(i , names(samples_out) , value=TRUE)]
selected_pat <- unique(unlist(selected_tum))
npat_type <- c(npat_type , length(selected_pat) )
}
names(npat_type) <- chosenTumors_type
#Mutation Dataset
mut <- as.data.frame(
data.table::rbindlist(
lapply(1:length(out_double) , function(x) out_double[[x]][["out"]])
))
mut$Tumor_Type <- sapply(mut$genetic_profile_id , function(x) strsplit(x , split="_")[[1]][1])
goodCols <- c("entrez_gene_id"
,"gene_symbol"
,"case_id"
,"mutation_type"
,"amino_acid_change"
,"Tumor_Type"
)
mut <- mut[ , goodCols]
#Delete all the splice sites outside the coding region (reported as e1-2 or similar notations)
mut <- mut[ !grepl("^e" , mut$amino_acid_change) , ]
mut$letter <- substr(mut$amino_acid_change,1,1)
mut$position <- as.numeric(as.character(stringr::str_extract(
string=mut$amino_acid_change,pattern="\\d+")))
mut <- data.frame(
Entrez=mut$entrez_gene_id
, Gene_Symbol=mut$gene_symbol
, Amino_Acid_Letter=mut$letter
, Amino_Acid_Position=mut$position
, Amino_Acid_Change=mut$amino_acid_change
, Mutation_Type=mut$mutation_type
, Sample=mut$case_id
, Tumor_Type=mut$Tumor_Type)
for (i in colnames(mut)){
if(class(mut[,i])=="factor")
mut[,i] <- as.character(mut[,i])
}
#Delete all non-SNVs mutation and all non-TCGA MutationType
mut <- mut[ !is.na(mut$Mutation_Type) , ]
bad_mut_types <- c("Fusion" , "COMPLEX_INDEL" , "vIII deletion" , "Splice_Site_SNP" , "Indel")
mut <- mut[ !(mut$Mutation_Type %in% bad_mut_types) , ]
mut <- mut[ !(mut$Amino_Acid_Change=="MUTATED") , ]
if(NoSilent) {
mut <- mut[ mut$Mutation_Type!="Silent" , ]
}
if(Exonic) {
notTransc <- c("3'UTR"
,"3'Flank"
,"5'UTR"
,"5'Flank"
,"IGR1"
,"IGR"
,"Intron"
,"RNA"
,"Targeted_Region"
)
mut <- mut[ !(mut$Mutation_Type %in% notTransc) , ]
}
if( mutation_type=="missense" ) {
missense <- c("Missense_Mutation"
,"In_Frame_Del"
,"In_Frame_Ins"
)
mut <- mut[ mut$Mutation_Type %in% missense , ]
}
if( mutation_type=="silent" ) {
mut <- mut[ mut$Mutation_Type=="Silent" , ]
}
if( mutation_type=="truncating" ) {
truncating <- c("Frame_Shift_Del"
,"Nonsense_Mutation"
,"Translation_Start_Site"
,"Frame_Shift_Ins"
,"Nonstop_Mutation"
,"Splice_Site"
,"Indel"
)
mut <- mut[ mut$Mutation_Type %in% truncating , ]
}
mut <- unique(mut)
#Create frequency table by gene and tumor type
tum_type <- factor(mut$Tumor_Type , levels=chosenTumors_type)
gene <- tryCatch( factor(mut$Gene_Symbol , levels=levels(myGenes[ , "Gene_Symbol"]))
, error=function(e) factor(mut$Gene_Symbol , levels=unique(mut$Gene_Symbol))
, warning=function(w) factor(mut$Gene_Symbol , levels=unique(mut$Gene_Symbol))
)
sample_table <- as.data.frame.matrix(table(tum_type , gene ))
sample_table2 <- data.frame(StudyID = chosenTumors_type
,Total_Sequenced_Samples = unname(npat_type)
)
sample_table_absFreq <- merge( sample_table2 , sample_table , by.x="StudyID" , by.y="row.names")
return(list( Mutations=mut , AbsFreq=sample_table_absFreq ))
}
.getLocalGeneMutations <- function(myGenes=myGenes
,localData=NULL
,mutation_type=c("missense", "all", "truncating" , "silent")
,NoSilent=TRUE
,Exonic=TRUE
,tumor_type="all_tumors"
)
{
if( is.null(localData) ) stop('no local file provided')
## all mutatios from local data
mut <- localData
#Delete all non-SNVs mutation and all non-TCGA MutationType
mut <- mut[ !is.na(mut$Mutation_Type) , ]
bad_mut_types <- c("Fusion" , "COMPLEX_INDEL" , "vIII deletion" , "Splice_Site_SNP" , "Indel")
mut <- mut[ !(mut$Mutation_Type %in% bad_mut_types) , ]
mut <- mut[ !(mut$Amino_Acid_Change=="MUTATED") , ]
## filter: genes
chosenGenes <- myGenes$Gene_Symbol
mut <- mut[mut$Gene_Symbol %in% chosenGenes, ]
## filter: mutation type
mutation_user_choiche <- mutation_type[1]
chosenMutations <- unique(mut$Mutation_Type)
## check flags
if(mutation_user_choiche=="silent") NoSilent=FALSE
if(NoSilent)
chosenMutations <- chosenMutations[chosenMutations != "Silent"]
if(Exonic) {
notTransc <- c("3'UTR", "3'Flank", "5'UTR", "5'Flank"
,"IGR1", "IGR", "Intron", "RNA", "Targeted_Region")
chosenMutations <- chosenMutations[!chosenMutations %in% notTransc]
}
## check user choiche
if( mutation_user_choiche=="missense" ) {
chosenMutations <- chosenMutations[chosenMutations %in%
c("Missense_Mutation", "In_Frame_Del", "In_Frame_Ins")]
} else if ( mutation_user_choiche=="silent" ) {
chosenMutations <- chosenMutations[chosenMutations == 'Silent']
} else if( mutation_user_choiche=="truncating" ) {
truncating <- c("Frame_Shift_Del"
,"Nonsense_Mutation"
,"Translation_Start_Site"
,"Frame_Shift_Ins"
,"Nonstop_Mutation"
,"Splice_Site"
,"Indel"
)
chosenMutations <- chosenMutations[chosenMutations %in% truncating]
}
mut <- mut[mut$Mutation_Type %in% chosenMutations, ]
## filter: tumor types
chosenTumors <- unique(mut$Tumor_Type)
if( tumor_type[1]!="all_tumors" )
chosenTumors <- chosenTumors[chosenTumors %in% tumor_type]
mut <- mut[mut$Tumor_Type %in% chosenTumors, ]
mut <- unique(mut)
return(list( Mutations=mut , AbsFreq=NA ))
}
.alnWeights <- function(aln)
{
aln_agg <- aln$ALIGNMENT
aln_agg$pos_existance <- ifelse(is.na(aln_agg$Ref) , 0 , 1)
aln_agg2 <- aggregate(pos_existance~Align , data=aln_agg , FUN=sum , simplify=TRUE)
return(aln_agg2$pos_existance/sum(aln_agg2$pos_existance))
}
.MAD <- function(x) {
med <- median(x , na.rm=TRUE)
MAD <- median( abs(x - med) )
return(1.4826 * MAD)
}
######################
###### calculate entropy
############################
.shannon <- function(q) {
diff <- diff(q$x)[1]
p <- q$y[q$y != 0]
shan <- -sum(p*log(p))*diff
return(shan)
}
.profileDensity <- function(profile, bw=NULL)
{
nPos <- length(profile)
positions <- which(as.logical(profile))
positions <- rep(positions, times=profile[positions])
if( is.null(bw) ) {
d <- density(positions, from=1, to=nPos, n=nPos)
} else {
if( bw==0 ) {
d <- list(x=1:nPos, y=profile, bw=0)
} else {
d <- density(positions, bw=bw, from=1, to=nPos, n=nPos)
}
}
# normalize before output
d$y <- d$y/sum(d$y)
return(d)
}
.profileEntropy <- function(profile, bw=NULL, norm=TRUE, model=NULL, weights=NULL, ...)
{
d <- .profileDensity(profile, bw=bw, ...)
ent <- .shannon(d)
if( is.null(bw) ) bw <- d$bw
if( norm ) {
if( !is.null(model) ) {
unif <- model(sum(profile))
} else {
len <- length(profile)
nmut <- sum(profile)
unif <- .sampleUnifEntropyL(len, nmut, bw=bw, weights=weights)
}
mean <- unif[[3]]-unif[[1]]
var <- unif[[2]]^2
## check: if variance is 0, put the
## profile pvalue to zero
if( var==0 ) {
pval <- 1
} else {
shape <- mean^2/var
scale <- var/mean
pval <- pgamma(unif[[3]]-ent, shape=shape, scale=scale, lower.tail=FALSE)
}
return(log10(pval))
} else return(ent)
}
.sampleUnifEntropyL.old <- function(len, nmut, bw, nboot=1000, weights=NULL,
center=median, variability=.MAD)
{
if(is.null(weights)) weights <- rep(1/len , len)
boots <- sapply(1:nboot, function(i) {
d <- density(sample(1:len, nmut, replace=TRUE , prob=weights), bw=bw, from=1, to=len, n=len)
.shannon(d)
})
return(list(center=center(boots), variability=variability(boots), max=max(boots)))
}
.sampleUnifEntropyL <- function(len, nmut, bw, nboot=1000, weights=NULL,
center=median, variability=.MAD)
{
if(is.null(weights)) weights <- rep(1/len , len)
boots <- sapply(1:nboot, function(i) {
positions <- sample(1:len, nmut, replace=TRUE , prob=weights)
t <- table(positions)
profile <- rep(0, len)
profile[as.numeric(names(t))] <- t
.profileEntropy(profile, bw=bw, norm=FALSE)
})
return(list(center=center(boots), variability=variability(boots), max=max(boots)))
}
.makeUniformModel <- function(mat, bw, nboot=1000, plotOUT=TRUE,
weights=NULL, center=median, variability=.MAD, parallelize=FALSE )
{
if( parallelize ) {
applyfun <- mclapply
} else applyfun <- lapply
geneLen <- ncol(mat)
if( is.null(weights) ) weights <- rep(1/geneLen , geneLen)
minNMut <- floor(sum(mat)/10)*10 #round to the upper ten
minNMut <- ifelse(minNMut==0 , 1 , minNMut)
maxNMut <- ceiling(sum(mat)/10)*10 #round to the upper ten
maxNMut <- ifelse(maxNMut==0 , 1 , maxNMut)
nMutInt <- unique(c(minNMut, maxNMut))
if(length(nMutInt)==1) nMutInt <- c(nMutInt , nMutInt+1)
outReal <- applyfun(nMutInt, function(i)
.sampleUnifEntropyL(geneLen, i, bw=bw, nboot=nboot , weights=weights,
center=center, variability=variability))
outReal <- do.call('cbind',outReal)
polynomialModel <- function(x, par) {
sapply( x
, function(x_i)
sum(sapply(1:length(par), function(i)
if(is.na(par[i])) 0 else x_i^(i-1) * par[i] )))
}
pn.optim.aic <- function( tpts , experiment, variance=NULL ) {
if( length(experiment) < 2 ) return(NA)
polyOrderChisq <- function(i) {
model <- lm( experiment~poly( tpts , i , raw=TRUE ) )
return(list(par=model$coeff, value=AIC(model)))
}
sapply(1:min(30,length(tpts)-1), polyOrderChisq)
}
pnout <- pn.optim.aic(nMutInt, unlist(outReal[1,]), 1)
degree <- min(which.min(unlist(pnout[2,])))
par.mean <- pnout[1,degree]$par
model.mean <- function(mut) polynomialModel(mut, par.mean)
pnout <- pn.optim.aic(nMutInt, unlist(outReal[2,]), 1)
degree <- min(which.min(unlist(pnout[2,])))
par.sd <- pnout[1,degree]$par
model.sd <- function(mut) polynomialModel(mut, par.sd)
pnout <- pn.optim.aic(nMutInt, unlist(outReal[3,]), 1)
degree <- min(which.min(unlist(pnout[2,])))
par.max <- pnout[1,degree]$par
model.max <- function(mut) polynomialModel(mut, par.max)
modelUnif <- function(nmut)
list(mean=model.mean(nmut), sd=model.sd(nmut), max=model.max(nmut))
if( plotOUT ) {
par(mfrow=c(1,3))
plot(nMutInt, unlist(outReal[1,]), xlab='n of mutations', ylab='',
main='entropy center measure')
lines(nMutInt, model.mean(nMutInt), col='red', lwd=3)
plot(nMutInt, unlist(outReal[2,]), xlab='n of mutations', ylab='',
main='entropy variability measure')
lines(nMutInt, model.sd(nMutInt), col='red', lwd=3)
plot(nMutInt, unlist(outReal[3,]), xlab='n of mutations', ylab='',
main='max entropy measure')
lines(nMutInt, model.max(nMutInt), col='red', lwd=3)
}
return(modelUnif)
}
.makeNullProfile <- function(mat, bw, nboot=1000, plotOUT=TRUE,
weights=NULL, center=median, variability=.MAD)
{
geneLen <- ncol(mat)
if( is.null(weights) ) weights <- rep(1/geneLen , geneLen)
nMut <- sum(mat)
if( bw==0 ) {
# to prevent having center and variability
# that both equals 0
center <- mean
variability <- sd
}
boots <- lapply(1:nboot, function(i) {
# density(sample(1:geneLen, nMut, replace=TRUE , prob=weights), bw=bw, from=1, to=geneLen, n=geneLen)
positions <- sample(1:geneLen, nMut, replace=TRUE , prob=weights)
t <- table(positions)
profile <- rep(0, geneLen)
profile[as.numeric(names(t))] <- t
.profileDensity(profile, bw=bw)
})
nullDensities <- sapply(boots, '[[', 'y')
# calulate parameters for the gamma distribution
mu <- apply(nullDensities, 1, center)
s <- apply(nullDensities, 1, variability)
s2 <- s^2
# apply gamma distribution to find thresholds
upperThreshold <- qgamma(.95, shape=mu^2/s2, scale=s2/mu)
lowerThreshold <- qgamma(.05, shape=mu^2/s2, scale=s2/mu)
# pvalue of every aa
d <- .profileDensity(colSums(mat), bw=bw) #, from=1, to=geneLen, n=geneLen)
pvals <- pgamma(d$y, shape=mu^2/s2, scale=s2/mu, lower.tail=FALSE)
return(data.frame(
mean=mu, lTsh=lowerThreshold, uTsh=upperThreshold, profile=d$y, pvalue=pvals#, qvalue=qvals
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.