Description Usage Arguments Details Value Author(s) Examples
View source: R/stats_functions.R
Compare the likelihood ratio test statistic to its ecdf under the null for two mutated genes/pathways in clones of patients.
1 2 | ecdf_lr_test_clon_excl_avg_rate(entA, entB, clone_tbl, avg_rates_m, ecdf_list,
alternative)
|
entA |
One gene/pathway of the pair. |
entB |
The other gene/pathway of the pair. |
clone_tbl |
The clone tibble as generated with
|
avg_rates_m |
The average rates of clonal exclusivity for each patient. The name of each rate is the respective patient_id. |
ecdf_list |
The list of ECDF's of the test statistic under the
null distribution. Can be generated with
|
alternative |
The character indicating whether pairs should only be tested if delta > 0 or if all pairs should be tested. Can be one of "greater" or "two.sided". |
Tests whether the observed number of clonal exclusivities of mutated entities (genes or pathways) A and B in clones of patients is significantly different from what would be expected given the average clonal exclusivity rates. The observed test statistic is compared to the ecdf of the test statistic under the null hypothesis.
Returns list(p_val, num_patients, mle_delta, test_statistic), i.e. a list with the p-value, the number of patients in which both of the genes/pathways were mutated, the maximum likelihood estimate of the delta, and the test statistic.
Ariane L. Moore
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | clone_tbl <- dplyr::tibble("file_name"=
rep(c(rep(c("fn1", "fn2"), each=3)), 2),
"patient_id"=rep(c(rep(c("pat1", "pat2"), each=3)), 2),
"altered_entity"=c(rep(c("geneA", "geneB", "geneC"), 4)),
"clone1"=c(0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0),
"clone2"=c(1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1),
"tree_id"=c(rep(5, 6), rep(10, 6)))
clone_tbl_pat1 <- dplyr::filter(clone_tbl, patient_id == "pat1")
clone_tbl_pat2 <- dplyr::filter(clone_tbl, patient_id == "pat2")
rates_exmpl_1 <- compute_rates_clon_excl(clone_tbl_pat1)
rates_exmpl_2 <- compute_rates_clon_excl(clone_tbl_pat2)
avg_rates_m <- apply(cbind(rates_exmpl_1, rates_exmpl_2), 2, mean)
names(avg_rates_m) <- c(names(rates_exmpl_1)[1],
names(rates_exmpl_2)[1])
values_clon_excl_num_trees_pat1 <- get_hist_clon_excl(clone_tbl_pat1)
values_clon_excl_num_trees_pat2 <- get_hist_clon_excl(clone_tbl_pat2)
list_of_num_trees_all_pats <-
list(pat1=values_clon_excl_num_trees_pat1[[1]],
pat2=values_clon_excl_num_trees_pat2[[1]])
list_of_clon_excl_all_pats <-
list(pat1=values_clon_excl_num_trees_pat1[[2]],
pat2=values_clon_excl_num_trees_pat2[[2]])
num_pat_pair_max <- 2
num_pairs_sim <- 10
ecdf_list <- generate_ecdf_test_stat(avg_rates_m,
list_of_num_trees_all_pats,
list_of_clon_excl_all_pats,
num_pat_pair_max,
num_pairs_sim)
ecdf_lr_test_clon_excl_avg_rate("geneA", "geneB", clone_tbl,
avg_rates_m,
ecdf_list, "greater")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.