Nothing
.checkVars <- function(variables, col.nums, col.total, intensity.vars) {
stopifnot(all(variables %in% c("genotype", intensity.vars)))
## check col.nums
col.nums <- col.nums[!is.na(col.nums)]
if(!all(names(col.nums) %in% c("snp", "sample", "geno", "a1", "a2", intensity.vars))) stop("problem with col.nums vector names")
if(!is.integer(col.nums)) stop("col.nums vector class is not integer")
if(!("snp" %in% names(col.nums))) stop("snp id missing in col.nums")
if( max(col.nums) > col.total) stop("some element of col.nums is greater than total number of columns")
## compare with variables
chk.vars <- intersect(names(col.nums), intensity.vars)
if (length(chk.vars) > 0) {
if(!all(is.element(chk.vars, variables))) stop("mismatch between col.nums and variables")
}
if(any(is.element(names(col.nums), c("geno", "a1", "a2"))) & !is.element("genotype",variables)) stop("mismatch between col.nums and variables")
}
.checkSnpAnnotation <- function(snp.annotation, variables="", allele.coding="") {
## check that snp annotation has right columns
stopifnot(all(c("snpID", "chromosome", "position", "snpName") %in% names(snp.annotation)))
if ("genotype" %in% variables & allele.coding == "nucleotide") {
if (!(all(c("alleleA", "alleleB") %in% names(snp.annotation)))) {
stop("alleleA and alleleB are required in snp.annotation for allele.coding=nucleotide")
}
}
## make sure all snp annotation columns are integers
if (!is(snp.annotation$snpID, "integer")) {
snp.annotation$snpID <- as.integer(snp.annotation$snpID)
warning(paste("coerced snpID to type integer"))
}
if (!is(snp.annotation$chromosome, "integer")) {
snp.annotation$chromosome <- as.integer(snp.annotation$chromosome)
warning(paste("coerced chromosome to type integer"))
}
if (!is(snp.annotation$position, "integer")) {
snp.annotation$position <- as.integer(snp.annotation$position)
warning(paste("coerced position to type integer"))
}
## make sure snpID is unique
stopifnot(length(snp.annotation$snpID) == length(unique(snp.annotation$snpID)))
## make sure snpID is sorted by chromsome and position
stopifnot(all(snp.annotation$snpID == sort(snp.annotation$snpID)))
sorted <- order(snp.annotation$chromosome, snp.annotation$position)
if (!all(snp.annotation$snpID == snp.annotation$snpID[sorted])) {
stop("snpID is not sorted by chromosome and position")
}
}
.mapAlleles <- function(dat, allele.map) {
if ("geno" %in% names(dat)) {
dat$a1 <- substr(dat$geno,1,1)
dat$a2 <- substr(dat$geno,2,2)
dat$geno <- NULL
}
a1.ab <- rep(NA, nrow(dat))
a2.ab <- rep(NA, nrow(dat))
for (allele in c("A", "B")) {
a1.ab[dat$a1 == allele.map[,paste0("allele",allele)]] <- allele
a2.ab[dat$a2 == allele.map[,paste0("allele",allele)]] <- allele
}
dat$a1 <- a1.ab
dat$a2 <- a2.ab
dat
}
## number of A alleles in the genotype, with missing = NA
.genoAsInt <- function(geno) {
genotype <- rep(NA, length(geno))
genotype[geno %in% "AA"] <- 2
genotype[geno %in% c("AB", "BA")] <- 1
genotype[geno %in% "BB"] <- 0
genotype
}
createDataFile <- function(path=".",
filename,
file.type=c("gds", "ncdf"),
variables = "genotype",
snp.annotation,
scan.annotation,
sep.type,
skip.num,
col.total,
col.nums,
scan.name.in.file,
allele.coding = c("AB", "nucleotide"),
precision = "single",
compress = "LZMA_RA:1M",
compress.geno = "",
compress.annot = "LZMA_RA",
array.name = NULL,
genome.build = NULL,
diagnostics.filename = "createDataFile.diagnostics.RData",
verbose = TRUE) {
file.type <- match.arg(file.type)
allele.coding <- match.arg(allele.coding)
## checks
intensity.vars <- c("quality", "X", "Y", "rawX", "rawY", "R", "Theta", "BAlleleFreq","LogRRatio")
.checkVars(variables, col.nums, col.total, intensity.vars)
.checkSnpAnnotation(snp.annotation, variables, allele.coding)
stopifnot((c("scanID", "scanName", "file") %in% names(scan.annotation)))
## create data file
if (file.type == "gds") {
## don't need n.samples since we will use append later
## get storage mode of samples
storage.mode <- ifelse(is.character(scan.annotation$scanID), "character", "integer")
genofile <- .createGds(snp.annotation, filename, variables, precision,
compress, compress.geno, compress.annot,
sample.storage=storage.mode)
} else if (file.type == "ncdf") {
if (!(requireNamespace("ncdf4"))) {
stop("please install ncdf4 to work with NetCDF files")
}
if (any(is.na(as.integer(scan.annotation$scanID)))) {
stop("integer scanID required for ncdf files")
}
genofile <- .createNcdf(snp.annotation, filename, variables, nrow(scan.annotation),
precision, array.name, genome.build)
}
## Input and check the genotypic data
## get sample id information
sample.names <- scan.annotation$scanName
sample.nums <- scan.annotation$scanID
## file names
data.filenames <- file.path(path, scan.annotation$file)
rm(scan.annotation)
## get snp information
snp.names <- snp.annotation$snpName
n <- nrow(snp.annotation)
if ("genotype" %in% variables & allele.coding == "nucleotide") {
allele.map <- snp.annotation[,c("alleleA", "alleleB")]
row.names(allele.map) <- snp.names
}
rm(snp.annotation)
## generate colClasses vector for read.table
cc <- rep("NULL",col.total)
cc[col.nums[names(col.nums) %in% c("snp","sample","geno","a1","a2")]] <- "character"
cc[col.nums[names(col.nums) %in% intensity.vars]] <- "double"
## generate names for the genotype data.frame
df.names <- names(sort(col.nums))
## set up objects to keep track of things for each file
fn <- length(data.filenames)
read.file <- rep(NA, fn) # indicator of whether the file was readable or not
row.num <- rep(NA, fn) # number of rows read
samples <- vector("list",fn) # list of vectors of unique sample names in each file
sample.match <- rep(NA, fn) # indicator whether sample name inside file matches sample.names vector
missg <- vector("list",fn) # vector of character string(s) used for missing genotypes (i.e. not AA, AB or BB)
snp.chk <- rep(NA,fn) # indicator for incorrect set of snp ids
chk <- rep(NA,fn) # indicator for final check on data ready to load into file
## when values for the indicators are assigned, a value of 1 means okay and 0 means not okay
## a value of NA means that file processing was aborted before that check was made
## add data to file one sample (file) at a time
if (verbose) start <- Sys.time() # to keep track of the rate of file processing
for(i in 1:fn){
## save diagnostics for each sample in case of interruption
diagnostics <- list(read.file, row.num, samples, sample.match, missg, snp.chk, chk)
names(diagnostics) <- c("read.file", "row.num", "samples", "sample.match", "missg", "snp.chk", "chk")
save(diagnostics, file=diagnostics.filename)
## read in the file for one sample and keep columns of interest; skip to next file if there is a read error (using function "try")
if(scan.name.in.file == -1) {skip.num <- skip.num-1; head<-TRUE} else {head<-FALSE}
dat <- try(fread(data.filenames[i], header=head, sep=sep.type, skip=skip.num, colClasses=cc, data.table=FALSE))
if (inherits(dat, "try-error")) { read.file[i] <- 0; message(paste("error reading file",i)); next }
read.file[i] <- 1
## get sample name from column heading for Affy
if(scan.name.in.file == -1) {tmp.names <- names(dat)}
names(dat) <- df.names
##check and save row and sample number info
row.num[i] <- dim(dat)[1]
if(row.num[i] != n) {rm(dat); next} # each file should have the same number of rows (one per snp)
## sample names for Illumina (i.e. a sample name column)
if(is.element("sample", names(dat))){
samples[[i]] <- unique(dat$sample)
if(length(samples[[i]])>1) {rm(dat);next} # there should only be one sample per file
if(samples[[i]] != sample.names[i]) {sample.match[i] <- 0; rm(dat); next} else {sample.match[i] <- 1}
## sample name inside file should match sample.name vector
}
## sample names for Affy (one column label contains the sample name)
if(scan.name.in.file == -1) {
tmp <- paste(sample.names[i], c("_Call", "_Confidence",".cel"),sep="")
if(!any(is.element(tmp, tmp.names))) {sample.match[i] <- 0; rm(dat); next} else {sample.match[i] <- 1}
} ## sample name embedded in file name and column name within file should match
## check for duplicate snp names
if(any(duplicated(dat$snp))) {snp.chk[i] <- 0; rm(dat); next}
## check that all expected snps are present and sort into int.id order
if(any(!is.element(dat$snp, snp.names))) {snp.chk[i] <- 0; rm(dat); next} else snp.chk[i] <- 1
dat <- dat[match(snp.names, dat$snp),]
## set non-finite values to missing
for (v in intersect(names(dat), intensity.vars)) dat[[v]][!is.finite(dat[[v]])]<- NA
if(any(is.element(c("geno","a1","a2"),names(dat)))){
if (allele.coding == "nucleotide") {
stopifnot(allequal(dat$snp, row.names(allele.map)))
dat <- .mapAlleles(dat, allele.map)
}
## make diploid genotypes if necessary
if(!is.element("geno", names(dat)) && is.element("a1", names(dat)) && is.element("a2", names(dat))) {
dat$geno <- paste0(dat$a1, dat$a2)
}
## get character string(s) for missing genotypes
missg[[i]] <- setdiff(dat$geno, c("AA","AB","BB"))
## Make genotypes numeric
dat$genotype <- .genoAsInt(dat$geno)
}
## Load data into file
vars <- intersect(c("genotype", intensity.vars), names(dat))
if (i == 1) message("adding variables: ", paste(vars, collapse=", "))
.addData(genofile, vars, dat, sample.nums[i], i)
chk[i] <- 1 # made it this far
rm(dat)
## to monitor progress
if(verbose & i%%10==0) {
rate <- (Sys.time()-start)/10
percent <- 100*i/fn
message(paste("file", i, "-", format(percent,digits=3), "percent completed - rate =", format(rate,digits=4)))
start <- Sys.time()
}
} ## end of for loop
## finish up
.close(genofile, verbose=verbose)
diagnostics <- list(read.file, row.num, samples, sample.match, missg, snp.chk, chk)
names(diagnostics) <- c("read.file", "row.num", "samples", "sample.match", "missg", "snp.chk", "chk")
save(diagnostics, file=diagnostics.filename)
return(diagnostics)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.