Nothing
.analyseNonLinear <- function(geneNames, output.folder, data.matrix)
{
chain.names <- c("Chain 1", "Chain 2")
file.name.1 <- paste(output.folder, "/chain1", sep="")
file.name.2 <- paste(output.folder, "/chain2", sep="")
## Read data
lambda.mean.1 <- .readLargeFileReturnMean_c(paste(file.name.1, "/Lambda_mcmc", sep=""))
mu.mean.1 <- .readLargeFileReturnMean_c(paste(file.name.1, "/Mu_mcmc", sep=""))
ro.mean.1 <- .readLargeFileReturnMean_c(paste(file.name.1, "/Rho_mcmc", sep=""))
tau.mean.1 <- .readLargeFileReturnMean_c(paste(file.name.1, "/Tau_mcmc", sep=""))
all.f.1 <- read.table(paste(file.name.1, "/all_f", sep=""))
all.fsqr.1 <- read.table(paste(file.name.1, "/all_f_sqr", sep=""))
Full_F_sqr.1 <- read.table(paste(file.name.1, "/Full_F_sqr", sep=""))
# Fixed gamma files
fixedGammaMat <- as.matrix(read.table(paste(file.name.1, "/FixedGammaFile", sep="")))
meanProbs_NumParents <- .readGammaFile_Return_MeanAndNumParents_c(paste(file.name.1, "/Gamma_mcmc", sep=""), fixedGammaMat)
fixedGammaMat <- as.vector(fixedGammaMat)
meanProbs1 <- meanProbs_NumParents[[1]]
numParents <- meanProbs_NumParents[[2]]
lambda.mean.2 <- .readLargeFileReturnMean_c(paste(file.name.2, "/Lambda_mcmc", sep=""))
mu.mean.2 <- .readLargeFileReturnMean_c(paste(file.name.2, "/Mu_mcmc", sep=""))
ro.mean.2 <- .readLargeFileReturnMean_c(paste(file.name.2, "/Rho_mcmc", sep=""))
tau.mean.2 <- .readLargeFileReturnMean_c(paste(file.name.2, "/Tau_mcmc", sep=""))
meanProbs2 <- .readLargeFileReturnMean_c(paste(file.name.2, "/Gamma_mcmc", sep=""))
all.f.2 <- read.table(paste(file.name.2, "/all_f", sep=""))
genes <- length(lambda.mean.2)
pdf(paste(output.folder, "/ConvergencePlots.pdf", sep=""), 9, 12, title = "ConvergencePlots.pdf")
old.par <- par(no.readonly = TRUE)
par(mfrow = c(3,2))
plot(meanProbs1, meanProbs2, xlab = chain.names[1], ylab = chain.names[2], main = "Gammas")
lines(c(-100,100), c(-100,100), col= "red")
plot(tau.mean.1, tau.mean.2, xlab = chain.names[1], ylab = chain.names[2], main = "tau") #, col = col.i)
lines(c(-100,100000), c(-100,100000), col= "red")
plot(ro.mean.1, ro.mean.2, xlab = chain.names[1], ylab = chain.names[2], main = "Rho") #, col = col.i)
lines(c(-100,100), c(-100,100), col= "red")
plot(lambda.mean.1, lambda.mean.2, xlab = chain.names[1], ylab = chain.names[2], main = "Lambda")#, col = col.i)
lines(c(-100,100000), c(-100,100000), col= "red")
plot(mu.mean.1, mu.mean.2, xlab = chain.names[1], ylab = chain.names[2], main = "Mu")#, col = col.i)
lines(c(-100,1000), c(-100,1000), col= "red")
plot(as.vector(as.matrix(all.f.1)), as.vector(as.matrix(all.f.2)), xlab = chain.names[1], ylab = chain.names[2], main = "mean f(x_t)")#, col = col.i)
lines(c(-100,1000), c(-100,1000), col= "red")
par(old.par)
dev.off()
# ## Get value of tau when on
# tau.on.1 <- .tauON(tau.1, as.matrix(gamma.1))
## Use fixed gamma info for gamma
notfixed.indx <- !is.finite(fixedGammaMat)
fullMeanGamma <- fixedGammaMat
fullMeanGamma[notfixed.indx] <- meanProbs1
net.prob <- matrix(fullMeanGamma, genes, genes)
rownames(net.prob) <- colnames(net.prob) <- geneNames
diag(net.prob) <- 0
probMat_withZeros <- net.prob
probMat_withZeros[!notfixed.indx] <- 0
## Read run parameters, remove text and make numeric
parameters.run <- read.table(paste(output.folder, "/runInfo.txt", sep=""), as.is = T)[,1]
parameters.run <- as.numeric(parameters.run[2:length(parameters.run)])
pdf(paste(output.folder, "/AnalysisPlots.pdf", sep=""), 9, 9, title = "AnalysisPlots.pdf")
## Network Heatmap
.heatMap.ggplot(net.prob)
## Marginal uncertainty plot
.plotCutOffGammas(as.vector(net.prob), main.text = "Number of links included in model vs Threshold used")
## Plot links per cutoff
.plotDistribParents.LargeMat(probMat_withZeros, numParents, geneNames)
## Plot prior and posterior tau
# .plotDistribAndPriorTau.sepSelf(tau.on.1, colMeans(gamma.1), parameters.run)
dev.off()
## library(GRENITS); output.folder <- "ExampleNonLinearNet"; analyse.output(output.folder)
pdf(paste(output.folder, "/InferredFunctionPlots.pdf", sep=""), 9, 12, title = "InferredFunctionPlots.pdf")
## Inferred functions
.plotSplinesFunctions(all.f.1, all.fsqr.1, Full_F_sqr.1, as.vector(net.prob),
as.matrix(data.matrix), geneNames, mu.mean.1)
dev.off()
rownames(numParents) <- geneNames
colnames(numParents) <- paste(0:length(geneNames), "Regulators")
## Write to file num parents
write.table(numParents, paste(output.folder, "/ProbNumParents.txt", sep=""))
## Check link marginals have "reasonably" converged
.linkConvergenceMessage(cbind(meanProbs1, meanProbs2))
netLink <- which(net.prob > -1, T)
cytoNet <- data.frame(geneNames[netLink[,2]],
geneNames[netLink[,1]], net.prob[netLink]) #, mean.B[netLink])
colnames(cytoNet) <- c("From", "To", "Probability") #, "Strength")
write.table(cytoNet, paste(output.folder, "/NetworkProbability_List.txt", sep=""), row.names=F, quote=F, sep="\t")
## Output probabilities in matrix format
write.table(net.prob, paste(output.folder, "/NetworkProbability_Matrix.txt", sep=""))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.