Nothing
#defining class
setClass("coregnet",
representation(GRN="data.frame",
# all Gene Regulatory Networks. Target gene (col1), co-activators (col2 : "a b c ..."), co-repressors (col3 : "z x w ..")
adjacencyList="list",
# Same network than GRN. 2 entries, bytf and bygene. Each entry is a list, with as many entries as regulators of genes
# for each gene or regulators, 2 entries act and rep containing a vector of the activated/repressed targets or regulators
# ex1 : adjacencyList$bytf$ELF3$act
# ex2 : adjacencyList$bygene$FGFR3$act
coRegulators="data.frame",# a description of the frequent coregulators. Unused yet
evidences="list", #
evidenceDescription="data.frame",
inferenceParameters="list"),
#evidenceDescription
#"evidenceType","originalGene","originalReg","originalEvidence"
#"commonGene","commonReg","evidences","commonEvidences", "enrichment","p.value")
validity=function(object){
if(nrow(object@GRN)==0){
return("Need a set of Gene Regulatory Networks (GRN) describing the regulation of each gene")
}else if( sum(names(object@adjacencyList) %in% c("bytf","bygene"))<2 | length(object@adjacencyList) != 2){
return("Need a representation of the network in an adjacency list (automatic if using the coregnet() function)")
}else{
return(TRUE)
}
}
)
#initialization
coregnet <- function(GRN,expressionDATA=NULL) {
if(is.data.frame(GRN)){
if(ncol(GRN) == 2 & !is.null(expressionDATA)){
stop("not correctly implemented yet")
if((sum(unique(GRN[,1]) %in% rownames(expressionDATA) )>0 ) &
(sum(unique(GRN[,2]) %in% rownames(expressionDATA) ) > 20 ) ){
if(length(unique(GRN[,2])) > length(unique(unique(GRN[,1])))){
warnings("The provided GRN looks like target genes are in the second column when they actually should be in the first")}
corels=apply(GRN,1,function(gg){return(cor(as.numeric(expressionDATA[gg[1],]),as.numeric(expressionDATA[gg[2],])))})
}else{
stop("To few genes of the GRN in the expression dataset.")
}
}
if(ncol(GRN)>=3 ){
if(!is.character(GRN[,1])| !is.character(GRN[,2])| !is.character(GRN[,3])){
stop(paste("Does not look like a good input network. All columns should be of type character,"
,"the first describing the target gene and columns 2 and 3 each describing" ,
"the set of regulators with a space seperating each regulator in the set."))
}else{
colnames(GRN)[1:3] = c("Target", "coact","corep")
}
}
}else if(is.matrix(GRN)){
if(ncol(GRN) > nrow(GRN) ){
warning(paste("The provided GRN looks like target genes are columns when they actually should be in line." ,
"Running anyway but might get a reverse target -> regulator network."))
}
if(is.null(colnames(GRN)) | is.null(rownames(GRN))){
stop("Need column names and row names to identify regulators and target genes respectively.")
}
values <- as.vector(GRN)
simpleTR <- expand.grid(dimnames(GRN),stringsAsFactors =FALSE)
colnames(simpleTR) <- c("Target","Reg")
simpleTR=simpleTR[which(values!=0),]
simpleTR=data.frame(simpleTR, "score" = values[which(values!=0)])
simpleTR$coact=NA
simpleTR$corep=NA
# if their are some scores below 0, we beleive that these mean inhibitor regulation
if(min(simpleTR$score) < 0){
message("Negative values are considered as inhibitory regulation.")
simpleTR$R2 = abs(simpleTR$score)
}else if(is.null(expressionDATA)){
stop(paste("It appears that the provided score only has positive scores.",
"This is fine as long as a gene expression data is provided in order to diffeentiate positive and negative regulation." ,
"The expressionData argument is therefore missing."))
}else if(sum(c(rownames(GRN),colnames(GRN)) %in% rownames(expressionDATA)) != (ncol(GRN)+nrow(GRN))){
stop("The genes in the network must all be in the rownames of the input expression data.")
}else{
print("computing corrrelation to sign the network")
simpleTR$R2 = simpleTR$score
ALLCOREL = cor(t(expressionDATA[unique(c(as.character(unlist(simpleTR[,1])),as.character(unlist(simpleTR[,2])))),]))
print("corel done")
simpleTR=do.call(rbind,mclapply(unique(simpleTR$Reg),function(r){
is=which(simpleTR$Reg ==r )
tmp=simpleTR[is,]
cr=ALLCOREL[r,]
tmp[,"score"]=tmp$score * sign(cr[tmp$Target])
return(tmp)
}))
print("assigning sign done")
}
simpleTR[which(simpleTR$score>0),"coact"]=simpleTR[which(simpleTR$score>0),"Reg"]
simpleTR[which(simpleTR$score<0),"corep"]=simpleTR[which(simpleTR$score<0),"Reg"]
sigrns=simpleTR[,c("Target","coact","corep","score","R2")]
act = sigrns$coact
rep = sigrns$corep
is = 1:length(rep)
sigrns=unique(sigrns)
SIGRNS = list()
bygene=apply(GRN,1,function(l,tfs){
act=tfs[which(l>0)]
act =unname( act[which(!is.na(act) & act !="")])
rep=tfs[which(l<0)]
rep =unname( rep[which(!is.na(rep) & rep !="")])
return(list("act"=act,"rep"=rep))
},tfs=colnames(GRN))
bytf=apply(GRN,2,function(l,genes){
act=genes[which(l>0)]
act =unname( act[which(!is.na(act) & act !="")])
rep=genes[which(l<0)]
rep =unname( rep[which(!is.na(rep) & rep !="")])
return(list("act"=act,"rep"=rep))
},genes=rownames(GRN))
coregnetwork= new("coregnet",GRN=sigrns ,"adjacencyList"=list("bygene"=bygene,"bytf"=bytf))
coregnetwork@coRegulators = coregulators(coregnetwork,verbose=FALSE,alpha=1)
return( coregnetwork )
}else{
stop("Wrong input format. See help.")
}
reshapedNet = .quicknonuniqgrnsTOSIGRNS(GRN)
coregnetwork= new("coregnet",GRN=reshapedNet$sigrns,"adjacencyList"=reshapedNet$adjList)
coregnetwork@coRegulators = coregulators(coregnetwork,verbose=FALSE,alpha=1)
return( coregnetwork )
}
setGeneric("coregnetToList", function(network) {
standardGeneric("coregnetToList")
})
setMethod("coregnetToList", signature(network = "coregnet"),
function(network){
return(lapply(lapply(lapply(network@adjacencyList$bytf,unlist),unname),unique))
})
setGeneric("coregnetToDataframe", function(network) {
standardGeneric("coregnetToDataframe")
})
setMethod("coregnetToDataframe", signature(network = "coregnet"),
function(network){
adj=coregnetToList(network)
return(data.frame("Regulator"=unlist(lapply(names(adj),function(y){rep.int(y,length(adj[[y]]))})),
"Target"=unlist(adj,use.names=FALSE),stringsAsFactors=FALSE))
})
setGeneric("targets", function(object,regulator=NULL,type=c("regulating","activating","repressing")) {
standardGeneric("targets")
})
setGeneric("activators", function(object,target,type=c("single","coregulators")) {
standardGeneric("activators")
})
setGeneric("repressors", function(object,target,type=c("single","coregulators")) {
standardGeneric("repressors")
})
setGeneric("regulators", function(object,target=NULL,type=c("single","coregulators")) {
standardGeneric("regulators")
})
setMethod("targets", signature(object = "coregnet"), function(object,regulator=NULL,type=c("regulating","activating","repressing")){
type <- match.arg(type)
if(length(regulator)>=1){
if(length(intersect( regulator , names(regulators(object))))==0){
return(NA)
}
if(type=="regulating"){
return(c(na.omit(unique(unlist(object@adjacencyList$bytf[regulator])))))
}else{
type=c("repressing"="rep","activating"="act")[type]
return(c(na.omit(unique(unlist(lapply(object@adjacencyList$bytf[regulator],function(x){return(x[[type]])}))))))
}
}else{
return(c(na.omit(unique(unlist(object@adjacencyList$bytf)))))
}
})
setMethod("activators", signature(object = "coregnet"), function(object,target,type=c("single","coregulators")){
type <- match.arg(type)
if(length(target )==1){
if(! target %in% targets(object)){
return(NA)
}
if(type=="single"){
return(c(na.omit(unique(object@adjacencyList$bygene[[target]]$act))))
}else{
coreg=unique(object@GRN[which(object@GRN$Target == target ),"coact"])
return(c(na.omit(coreg)))
}
}else if(length(target)>1){
if(length(intersect( target , targets(object)))==0){
return(NA)
}
if(type=="single"){
return(c(na.omit(unique(unlist(lapply(object@adjacencyList$bygene[target],function(x){return(x$act)}))))))
}else{
coreg=unique(object@GRN[which(object@GRN$Target %in% target ),"coact"])
return(c(na.omit(coreg)))
}
}else{
return(c(na.omit(unique(unlist(lapply(object@adjacencyList$bygene,function(x){return(x$act)}))))))
}
})
setMethod("repressors", signature(object = "coregnet"), function(object,target,type=c("single","coregulators")){
type <- match.arg(type)
if(length(target )==1){
if(! target %in% targets(object)){
return(NA)
}
if(type=="single"){
return(c(na.omit(unique(object@adjacencyList$bygene[[target]]$rep))))
}else{
coreg=unique(object@GRN[which(object@GRN$Target == target ),"corep"])
return(c(na.omit(coreg)))
}
}else if(length(target)>1){
if(length(intersect( target , targets(object)))==0){
return(NA)
}
if(type=="single"){
return(c(na.omit(unique(unlist(lapply(object@adjacencyList$bygene[target],function(x){return(x$rep)}))))))
}else{
coreg=unique(object@GRN[which(object@GRN$Target %in% target ),"corep"])
return(c(na.omit(coreg)))
}
}else{
return(c(na.omit(unique(unlist(lapply(object@adjacencyList$bygene,function(x){return(x$act)}))))))
}
})
setMethod("regulators", signature(object = "coregnet"), function(object,target=NULL,type=c("single","coregulators")){
type <- match.arg(type)
if(length(target )==1){
if(! target %in% targets(object)){
return(NA)
}
if(type=="single"){
return(c(na.omit(unique(unlist(object@adjacencyList$bygene[[target]])))))
}else{
coreg=unique(object@GRN[which(object@GRN$Target == target ),c("coact","corep")])
return(c(na.omit(coreg)))
}
}else if(length(target)>1){
if(length(intersect( target , targets(object)))==0){
return(NA)
}
if(type=="single"){
return(c(na.omit(unique(unlist(object@adjacencyList$bygene[target])))))
}else{
coreg=unique(object@GRN[which(object@GRN$Target %in% target ),c("coact","corep")])
return(c(na.omit(coreg)))
}
}else{
regs=sort(sapply(lapply(object@adjacencyList$bytf,unlist),length),decreasing=TRUE)
regs=regs[which(names(regs) !="NA" & names(regs) != "EMPTY" & !is.na(names(regs)))]
return(regs)
}
})
setGeneric("coregulators", function(object,maxcoreg=2,verbose=TRUE,minCommonGenes=ifelse(maxcoreg==2,1,10),adjustMethod="fdr",alpha=0.01) {
standardGeneric("coregulators")
})
setMethod("coregulators", signature(object = "coregnet"), function(object,maxcoreg=2,verbose=FALSE,
minCommonGenes=ifelse(maxcoreg==2,1,10),adjustMethod="fdr",alpha=0.01) {
grn=object@GRN
if(length(grep(" ",grn$coact)) ==0 &length(grep(" ",grn$corep))==0){
warning(paste("No natural co-regulators found in the network.",
"This either means that the network was inferred with another methods or that there is insufficient evidences to infer significant co-regulators."
,"Only pairs will be returned."))
maxcoreg=2
}
if(maxcoreg==2 ){
if(minCommonGenes==1 & length(object@coRegulators)>0 ){
if("fisherTest" %in% colnames(object@coRegulators)){
object@coRegulators$adjustedPvalue = p.adjust(object@coRegulators$fisherTest,method=adjustMethod)
return(object@coRegulators[which(object@coRegulators$adjustedPvalue <= alpha),])
}
}
if(verbose){ message("Transforming co-regulation network.")}
# if there are some GRN with sets of regulators (several TF)
if((sum(grepl(" ",grn$coact))+sum(grepl(" ",grn$corep)))>0){
if(verbose){message("Mining co-occurences.")}
trans=as(c(strsplit(grn$coact," "),strsplit(grn$corep," ")),"transactions")
frcoreg=suppressWarnings(apriori(trans,parameter=list(support =(minCommonGenes)/nrow(grn),
maxlen=2,minlen=2,target="frequent itemsets"),control=list(verbose=FALSE)))
coregs = data.frame(do.call(rbind,as((slot(frcoreg,"items")),"list")),"support" = as((slot(frcoreg,"quality")),"vector"))
colnames(coregs) = c("Reg1","Reg2","Support")
coregs[,1]=as.character( coregs[,1])
coregs[,2]=as.character( coregs[,2])
coregs = coregs[order(coregs[,3],decreasing=TRUE),]
coregs$nGRN = coregs[,3] * length(trans)
}else{
adjlist = object@adjacencyList
if(verbose){ message("Transforming co-regulation network.")}
trans=as(c(lapply(adjlist$bygene,function(x){return(x$act)}),lapply(adjlist$bygene,function(x){return(x$rep)})),"transactions")
if(verbose){message("Mining co-occurences.")}
frcoreg=suppressWarnings(apriori(trans,parameter=list(support =minCommonGenes/(length(adjlist$bygene)*2),
maxlen=2,minlen=2,target="frequent itemsets"),control=list(verbose=FALSE)))
if(length(frcoreg)==0){
warning("No coregulators found with this threshold.")
return( data.frame())
}
coregs = data.frame(do.call(rbind,as((slot(frcoreg,"items")),"list")),"support" = as((slot(frcoreg,"quality")),"vector"))
colnames(coregs) = c("Reg1","Reg2","Support")
coregs[,1]=as.character( coregs[,1])
coregs[,2]=as.character( coregs[,2])
coregs = coregs[order(coregs[,3],decreasing=TRUE),]
coregs$nGRN = coregs[,3] * length(trans)
}
universe = unique(names(object@adjacencyList$bygene))
coregs$fisherTest=unlist(mclapply(data.frame(t(coregs[,1:2]),stringsAsFactors=FALSE),function(co){
r1=object@adjacencyList$bytf[[co[1]]]
r1 = list("act" = setdiff(r1$act,r1$rep),"rep"=setdiff(r1$rep,r1$act))
r2=object@adjacencyList$bytf[[co[2]]]
r2 = list("act" = setdiff(r2$act,r2$rep),"rep"=setdiff(r2$rep,r2$act))
coregulatedgenes = unique(c(intersect(r1$act,r2$act),intersect(r1$rep,r2$rep)))
anticoregulatedgenes = unique(c(intersect(r1$rep,r2$act),intersect(r1$rep,r2$act)))
r1Only =unique(c( setdiff(r1$act,r2$act) ,setdiff(r1$rep,r2$rep) ))
r2Only =unique(c( setdiff(r2$act,r1$act) ,setdiff(r2$rep,r1$rep) ))
reste = setdiff(universe,unique(unlist(c(r1,r2))))
return( fisher.test(matrix(c(length(coregulatedgenes),length(r1Only),length(r2Only),length(reste)),nrow=2),alternative="greater")$p.value)
}))
rownames(coregs)=NULL
coregs$adjustedPvalue = p.adjust(coregs$fisherTest,method=adjustMethod)
return(coregs[which(coregs$adjustedPvalue <= alpha),])
}else if(maxcoreg > 2){
adjlist = object@adjacencyList
if(verbose){ message("Transforming co-regulation network.")}
listGRNact=as(lapply(adjlist$bygene,function(x){return(x$act)}),"transactions")
listGRNrep=as(lapply(adjlist$bygene,function(x){return(x$rep)}),"transactions")
if(verbose){message("Mining co-occurences.")}
frcoact=suppressWarnings(apriori(listGRNact,parameter=list(support =minCommonGenes/length(listGRNact),
maxlen=maxcoreg,minlen=2,target="maximally frequent itemsets"),control=list(verbose=FALSE)))
frcorep=suppressWarnings(apriori(listGRNrep, parameter=list(support =minCommonGenes/length(listGRNrep),
maxlen=maxcoreg,minlen=2,target="maximally frequent itemsets"),control=list(verbose=FALSE)))
frcoreg= union(frcorep,frcoact)
print(length(frcoreg))
if(length(frcoreg)==0){
warning("No coregulators found with this threshold.")
return(data.frame())
}
coregs = data.frame("CoRegulators"=sapply(as((slot(frcoreg,"items")),"list"),paste,collapse=" "),
"Support" = as((slot(frcoreg,"quality")),"vector"),stringsAsFactors = FALSE)
coregs = coregs[order(coregs[,2],decreasing=TRUE),]
colnames(coregs) = c("CoRegulators","Support")
rownames(coregs)=NULL
}else{stop("Wrong number of maximum coregulators. Must be 2 or more.")}
return(coregs)
})
#new printing method
setMethod("print","coregnet",
function(x){
print(paste( length(x@adjacencyList$bytf), "Transcription Factors. ",length(x@adjacencyList$bygene),
"Target Genes. ",length(unlist(x@adjacencyList$bygene)),"Regulatory interactions."))
if(nrow(x@evidenceDescription) >=1){
print(x@evidenceDescription[,5:10])
}else{
print("No added evidences.")
}
}
)
#new method to printout
setMethod("show",signature(object="coregnet"),
function(object){
print(paste( length(object@adjacencyList$bytf), "Transcription Factors. ",length(object@adjacencyList$bygene),
"Target Genes. ",length(unlist(object@adjacencyList$bygene)),"Regulatory interactions."))
if(nrow(object@evidenceDescription) >=1){
print(object@evidenceDescription[,5:10])
}else{
print("No added evidences.")
}
}
)
# new length method
setMethod("length","coregnet",
function(x){
return(c("TF"=length(x@adjacencyList$bytf),"Gene"=length(x@adjacencyList$bygene),"Interactions"=length(unlist(x@adjacencyList$bygene))))
}
)
# new dimension method
setMethod("dim","coregnet",
function(x){
return(c("TF"=length(x@adjacencyList$bytf),"Gene"=length(x@adjacencyList$bygene),"Interactions"=length(unlist(x@adjacencyList$bygene))))
}
)
# new summary method
setMethod("summary","coregnet",
function(object,...){
print(object,...)
}
)
.val2col<-function(z, zlim, col = NULL, breaks){
if(!missing(breaks)){
if(length(breaks) != (length(col)+1)){stop("must have one more break than colour")}
}
if(missing(breaks) & !missing(zlim)){
zlim[2] <- zlim[2]+c(zlim[2]-zlim[1])*(1E-3)#adds a bit to the range in both directions
zlim[1] <- zlim[1]-c(zlim[2]-zlim[1])*(1E-3)
breaks <- seq(zlim[1], zlim[2], length.out=(length(col)+1))
}
if(missing(breaks) & missing(zlim)){
zlim <- range(z, na.rm=TRUE)
zlim[2] <- zlim[2]+c(zlim[2]-zlim[1])*(1E-3)#adds a bit to the range in both directions
zlim[1] <- zlim[1]-c(zlim[2]-zlim[1])*(1E-3)
breaks <- seq(zlim[1], zlim[2], length.out=(length(col)+1))
}
CUT <- cut(z, breaks=breaks)
colorlevels <- col[match(CUT, levels(CUT))] # assign colors to heights for each point
return(colorlevels)
}
.traits <- function(m) {
nc <- ncol(m)
nr <- nrow(m)
qui <- which(!is.na(m[1,]))
d <- 0.5
x <- (0:nr-d)/(nr-1)
for (y in qui)
lapply(x, function(u)
lines(c(u,u), c((y-1-d)/(nc-1), (y-d)/(nc-1))))
abline(h=(0:nc-d)/(nc-1))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.