Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
warning = FALSE,
collapse = TRUE,
comment = "#"
)
library(CoRegFlux)
library(CoRegNet)
library(sybil)
library(latex2exp)
data("SC_GRN_1")
data("SC_EXP_DATA")
data("SC_experiment_influence")
data("SC_Test_data")
data("aliases_SC")
data("iMM904")
metabolites<-data.frame("names" = c("D-Glucose","Ethanol"),
"concentrations" = c(16.6,0))
metabolites_rates<- data.frame("name"=c("D-Glucose"),
"concentrations"=c(16.6),
"rates"=c(-2.81))
model_uptake_constraints <- adjust_constraints_to_observed_rates(model = iMM904,
metabolites_with_rates = metabolites_rates)
Testing_influence_matrix <- CoRegNet::regulatorInfluence(SC_GRN_1,SC_Test_data)
experiment_influence<- Testing_influence_matrix[,1]
PredictedGeneState <- predict_linear_model_influence(network = SC_GRN_1,
experiment_influence = experiment_influence,
train_expression = SC_EXP_DATA,
min_Target = 4,
model = iMM904,
aliases = aliases_SC)
Simulation1<-Simulation(model = iMM904,
time = seq(1,20,by = 1),
metabolites = metabolites,
initial_biomass = 0.45,
aliases = aliases_SC)
## ----warning = FALSE, eval = FALSE--------------------------------------------
# if(!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
# BiocManager::install("CoRegFlux")
## ----warning = FALSE, eval = FALSE--------------------------------------------
# library(CoRegFlux)
## ----warning = FALSE----------------------------------------------------------
data("SC_GRN_1")
data("SC_EXP_DATA")
data("SC_Test_data")
Testing_influence_matrix <- CoRegNet::regulatorInfluence(SC_GRN_1,SC_Test_data)
experiment_influence<- Testing_influence_matrix[,1]
## ---- warning= FALSE----------------------------------------------------------
data("aliases_SC")
data("iMM904")
PredictedGeneState <- predict_linear_model_influence(network = SC_GRN_1,
experiment_influence = experiment_influence,
train_expression = SC_EXP_DATA,
min_Target = 4,
model = iMM904,
aliases = aliases_SC)
GeneState<-data.frame("Name" = names(PredictedGeneState),
"State" = unname(PredictedGeneState))
## -----------------------------------------------------------------------------
data("aliases_SC")
data("iMM904")
metabolites<-data.frame("names" = c("D-Glucose","Ethanol"),
"concentrations" = c(16.6,0))
Simulation1<-Simulation(model = iMM904,
time = seq(1,20,by = 1),
metabolites = metabolites,
initial_biomass = 0.45,
aliases = aliases_SC)
Simulation1$fluxes_history[1:10,1:5]
## -----------------------------------------------------------------------------
library(sybil)
gpr(iMM904)[1:5]
## -----------------------------------------------------------------------------
rxnGeneMat(iMM904)[1:10,1:10]
## ---- warning = FALSE,message = FALSE-----------------------------------------
metabolites<-data.frame("names" = c("D-Glucose","Ethanol"),
"concentrations" = c(16.6,0))
Simulation1<-Simulation(model = iMM904,
time = seq(1,20,by = 1),
metabolites = metabolites,
initial_biomass = 0.45,
aliases = aliases_SC)
Simulation1$biomass_history
Simulation1$met_concentration_history
## -----------------------------------------------------------------------------
regulator_table <- data.frame("regulator" = c("MET32","CAT8"),
"influence" = c(-1.20322,-2.4),
"expression" = c(0,0),
stringsAsFactors = FALSE)
model_TF_KO_OV_constraints <- update_fluxes_constraints_influence(model= iMM904,
coregnet = SC_GRN_1,
regulator_table = regulator_table,
aliases = aliases_SC )
sol<-sybil::optimizeProb(model_TF_KO_OV_constraints)
#Additional parameters from sybil can then be integrated such as the chosen
# algorithms
sol
## ---- message = FALSE---------------------------------------------------------
Simulation2<-Simulation(model = iMM904,
time = seq(1,20,by = 1),
metabolites = metabolites,
initial_biomass = 0.45,
aliases = aliases_SC,
gene_state_function = function(a,b){GeneState})
Simulation2$biomass_history
Simulation2$met_concentration_history
## ----message = FALSE----------------------------------------------------------
regulator_table <- data.frame("regulator" = "MET32",
"influence" = -1.20322,
"expression" = 0,
stringsAsFactors = FALSE)
SimulationTFKO<-Simulation(model = iMM904,
time = seq(1,20,by = 1),
metabolites = metabolites,
initial_biomass = 0.45,
aliases = aliases_SC,
coregnet = SC_GRN_1,
regulator_table = regulator_table ,
gene_state_function = function(a,b){GeneState})
SimulationTFKO$biomass_history ## This KO is predicted as non-lethal
## ----message =FALSE-----------------------------------------------------------
regulator_table <- data.frame("regulator" = "MET32",
"influence" = -1.20322 ,
"expression" = 3,
stringsAsFactors = FALSE)
SimulationTFOV<-Simulation(model = iMM904,
time = seq(1,20,by = 1),
metabolites = metabolites,
initial_biomass = 0.45,
aliases = aliases_SC,
coregnet = SC_GRN_1,
regulator_table = regulator_table,
gene_state_function = function(a,b){GeneState})
SimulationTFOV$biomass_history ## This OV is predicted as non-lethal
## ----message =FALSE-----------------------------------------------------------
gene_table <- data.frame("gene" = c("YJL026W","YIL162W"),
"expression" =c(2,0),
stringsAsFactors = FALSE)
SimulationGeneKO_OV<-Simulation(model = iMM904,
time = seq(1,20,by = 1),
metabolites = metabolites,
initial_biomass = 0.45,
aliases = aliases_SC,
coregnet = SC_GRN_1,
gene_table = gene_table,
gene_state_function = function(a,b){GeneState})
SimulationGeneKO_OV$biomass_history ## This OV is predicted as non-lethal
## ----message =FALSE,warnings=FALSE--------------------------------------------
metabolites_rates <- data.frame("name"=c("D-Glucose"),
"concentrations"=c(16.6),
"rates"=c(-2.81))
model_uptake_constraints <- adjust_constraints_to_observed_rates(model = iMM904,
metabolites_with_rates = metabolites_rates)
model_gene_constraints <- coregflux_static(model= iMM904,
predicted_gene_expression =
PredictedGeneState,
aliases = aliases_SC)$model
model_TF_KO_OV_constraints <- update_fluxes_constraints_influence(model= iMM904,
coregnet = SC_GRN_1,
regulator_table = regulator_table,
aliases = aliases_SC )
model_gene_KO_OV_constraints <- update_fluxes_constraints_geneKOOV(
model= iMM904,
gene_table = gene_table,
aliases = aliases_SC)
sol <- sybil::optimizeProb(model_TF_KO_OV_constraints)
sol
## -----------------------------------------------------------------------------
fluxes_obs <-
get_fba_fluxes_from_observations(iMM904,0.3)
fluxes_obs[1:10,]
## -----------------------------------------------------------------------------
fluxes_intervals_obs <-
get_fva_intervals_from_observations(iMM904,0.3)
fluxes_intervals_obs[1:10,]
## -----------------------------------------------------------------------------
fluxes_obs[get_biomass_flux_position(iMM904),]
fluxes_intervals_obs[get_biomass_flux_position(iMM904),]
## ---- result="hide"-----------------------------------------------------------
metabolites_rates <- data.frame("name"=c("D-Glucose","Ethanol"),
"rates"=c(-10,-1))
fluxes_obs <-
get_fba_fluxes_from_observations(
model = iMM904,
observed_growth_rate = 0.3,
metabolites_rates = metabolites_rates)
fluxes_obs[get_biomass_flux_position(iMM904),]
fluxes_interval_obs <-
get_fva_intervals_from_observations(
model = iMM904,
observed_growth_rate =0.3,
metabolites_rates = metabolites_rates)
fluxes_interval_obs[get_biomass_flux_position(iMM904),]
## ---- message = FALSE, warnings = FALSE---------------------------------------
FBA_bounds_from_growthrate<- get_fba_fluxes_from_observations(
model = iMM904,observed_growth_rate = 0.3,
metabolites_rates = metabolites_rates)
FVA_bounds_from_growthrate<- get_fva_intervals_from_observations(
model = iMM904,observed_growth_rate = 0.3,
metabolites_rates = metabolites_rates)
## ---- message= FALSE, warning=FALSE-------------------------------------------
ODs<-seq.int(0.099,1.8,length.out = 5)
times = seq(0.5,2,by=0.5)
ODcurveToMetCurve<- ODCurveToMetabolicGeneCurves(times = times,
ODs = ODs,
model = iMM904,
aliases = aliases_SC,
metabolites_rates = metabolites_rates)
visMetabolicGeneCurves(ODcurveToMetCurve,genes = "YJR077C")
ODtoflux<-ODCurveToFluxCurves(model = iMM904,
ODs = ODs,
times = times,
metabolites_rates = metabolites_rates)
visFluxCurves(ODtoflux, genes ="ADK3")
## ----echo=FALSE,warning=FALSE,tidy=TRUE---------------------------------------
library(ggplot2)
library(latex2exp)
eq_title<-latex2exp::TeX('$v_{i}\\leq\\ln\\left(1+ \\exp\\left(\\theta+gpr_{i}\\left(X\\right)\\right)\\right)$')
fun_1 <- function(x)log(1+exp(x))
p <- ggplot2::ggplot(data = data.frame(x = 0), mapping = ggplot2::aes(x = x))
p + ggplot2::stat_function(fun = fun_1,colour="red") + ggplot2::xlim(-5,5) +
ggplot2::geom_vline(xintercept = 0) + ggplot2::geom_hline(yintercept = 0) + ggplot2::ggtitle(eq_title)
## ---- message =FALSE, eval=FALSE----------------------------------------------
# library(rBayesianOptimization)
# gRates <- 0.1
#
# opF<-function(p){
# CoRegFlux_model<-coregflux_static(model = model_uptake_constraints,
# gene_parameter = p,
# predicted_gene_expression =
# PredictedGeneState)
# ts<-optimizeProb(CoRegFlux_model$model)
# list(Score=-1*log(abs(lp_obj(ts)-gRates)/gRates),Pred=0)
# }
#
# result<-BayesianOptimization(FUN = opF,
# bounds = list(p = c(-10,10)),
# data.frame(p = seq(-10,10,by = 0.5)),
# n_iter = 10,
# verbose = TRUE)
#
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.