R/drawHeatmap.r

Defines functions .drawHeatmapMain .drawHeatmap_DataFrame .drawHeatmap_Data4Cseq

.drawHeatmap_Data4Cseq <- function(expData, plotFileName = "", smoothingType = "median", picDim = c(9, 2.2), bands = 5, cutoffLog = -7.0, xAxisIntervalLength = 50000, legendLabels = expression(2^-7, 2^0), useFragEnds = TRUE) {

    fragsToVisualize = formatFragmentData(expData, useFragEnds)

    drawHeatmapMain(fragsToVisualize, plotFileName, smoothingType, picDim, bands, cutoffLog, xAxisIntervalLength, legendLabels, useFragEnds)
}


.drawHeatmap_DataFrame <- function(expData, plotFileName = "", smoothingType = "median", picDim = c(9, 2.2), bands = 5, cutoffLog = -7.0, xAxisIntervalLength = 50000, legendLabels = expression(2^-7, 2^0), useFragEnds = TRUE) {

    fragsToVisualize = expData

    if (!useFragEnds) {
        print("drawHeatmap: use of fragment-wise interpolated data not possible for data frame input")
    }

    drawHeatmapMain(fragsToVisualize, plotFileName, smoothingType, picDim, bands, cutoffLog, xAxisIntervalLength, legendLabels, useFragEnds)
}


.drawHeatmapMain <- function(fragsToVisualize, plotFileName = "", smoothingType = "median", picDim = c(9, 2.2), bands = 5, cutoffLog = -7.0, xAxisIntervalLength = 50000, legendLabels = expression(2^-7, 2^0), useFragEnds = TRUE) {

    position = round((fragsToVisualize$start + fragsToVisualize$end) / 2)
    averageReads = fragsToVisualize$reads

    # prepare heatmap-like data (varied window lengths for running mean / running median)
    signal = matrix(0, bands, nrow(fragsToVisualize))

    for (i in 1:bands) {

        wl = i * 2 - 1

        if (smoothingType == "median") {
            # smoothed data (median with defined window length)
            signal[i,] = runmed(averageReads, wl, endrule = "keep")

        } else {
            # smoothed data (mean with defined window length)
            signal[i,] = runmean(averageReads, wl, endrule = "keep")
        }     
    }

    # prepare heatmap plot
    if (plotFileName != "") {
        if (grepl(".pdf", plotFileName)) {
            pdf(file = plotFileName, title = plotFileName, width = picDim[1], height = picDim[2], useDingbats = FALSE)  
        } else {
            tiff(filename = plotFileName, width = picDim[1], height = picDim[2], compression = "none", bg = "white", pointsize = 20)
        }
    }

    plot(position, averageReads,  ylim = c(0,1), ylab = "wl", xlab = "fragment position", type = "n", lty = 1, axes = FALSE)

    scale = 1 / (bands + 1.5)
    maxSignal = max(signal)

    # log-scale signal
    signal = log2(signal/maxSignal)

    # set cut-offs for log-scaled data
    capMin = cutoffLog
    capMax = 0.0

    # define axes with custom intervals
    minXAxis = floor(fragsToVisualize$start[1] / xAxisIntervalLength) * xAxisIntervalLength
    maxXAxis = ceiling(fragsToVisualize$end[nrow(fragsToVisualize)] / xAxisIntervalLength) * xAxisIntervalLength
    seqXAxis = seq(minXAxis, maxXAxis, by = xAxisIntervalLength)
    axis(side = 1, at = seqXAxis, labels = seqXAxis, las = 0)

    seqYAxis = c(0.5, bands - 0.5) * scale
    labelsYAxis = c(2*bands-1,1)    

    axis(side = 2, at = seqYAxis, labels = labelsYAxis, las = 2)

    # mark unused fragments (blind / repeated)
    rect(minXAxis, 0, maxXAxis, bands * scale, col = "black", border = NA)

    # prepare color palette 
    colorNumber = capMax*100-capMin*100 + 1
    colors = heat.colors(colorNumber)

    # pick colours for the fragments
    for (i in 1:bands) {

        for (j in 1:nrow(fragsToVisualize)) {

            if (signal[i,j] > capMax) {
                signal[i,j] = capMax
            }
            if (signal[i,j] < capMin) {
                signal[i,j] = capMin
            }

            index = round((signal[i,j] - capMin) * 99) + 1

            pickedColor = colors[index]

            # mark 'missing' fragments at the sides (only fully present running median / mean windows are used)
            if ((j < i) | (j > (nrow(fragsToVisualize) - i))) {
                pickedColor = "black"
            }

            # print fragments in chosen colours
            rect(fragsToVisualize[,2][j], (bands-i+1)*scale, fragsToVisualize[,3][j], (bands-i)*scale, col = pickedColor, border = NA)

        }
    }

    if (plotFileName != "") {
        dev.off()
    }

    # prepare heatmap legend
    chosenPalette = heat.colors(100)

    # prepare color legend plot
    if (plotFileName != "") {
        if (grepl(".pdf", plotFileName)) {
            pdf(file = "color_legend.pdf", title = "Color Legend", width = 2, height = 5, useDingbats=FALSE)  
        } else {
            tiff(filename = "color_legend.tiff", width = 200, height = 500, compression = "none", bg = "white", pointsize = 20)
        }

        par(mar=c(5.1,4.1,4.1,4.1))

        # basic plot
        plot(c(0,10), c(0,1), type='n', main="Signal intensity", axes = FALSE, xlab = "", ylab = "relative window coverage (log-scaled)")

        # add axis...
        legendLength = length(legendLabels) - 1
        axis(2, c((0:legendLength)/legendLength), labels = legendLabels, las = 1)

        # ... and color bands
        for (i in 1:(length(chosenPalette)-1)) {    
            y = (i-1) / 100
            rect(0, y, 10, y+1/100, col = chosenPalette[i], border=NA)
        }

        dev.off()
    }
}




setMethod("drawHeatmap",
    signature=signature(expData="Data4Cseq"),
    .drawHeatmap_Data4Cseq)

setMethod("drawHeatmap",
    signature=signature(expData="data.frame"),
    .drawHeatmap_DataFrame)

setMethod("drawHeatmapMain",
    signature=signature(fragsToVisualize="data.frame"),
    .drawHeatmapMain)

Try the Basic4Cseq package in your browser

Any scripts or data that you put into this service are public.

Basic4Cseq documentation built on Nov. 8, 2020, 6:53 p.m.