Nothing
#' Co-expression and co-abundance analysis of high-throughput sequencing data
#'
#' Mixture models are implemented to cluster genes from high-throughput
#' transcriptome sequencing (RNA-seq) data. Parameter estimation is performed
#' using the EM algorithm, and model selection is performed using
#' either the slope heuristics or the integrated completed likelihood (ICL)
#' criterion.
#'
#' \tabular{ll}{ Package: \tab coseq\cr Type: \tab Package\cr Version:
#' \tab 0.99.0\cr Date: \tab 2016-09-24\cr License: \tab GPL (>=3)\cr LazyLoad:
#' \tab yes\cr }
#'
#' @name coseq-package
#' @aliases coseq-package
#' @docType package
#' @author Andrea Rau, Cathy Maugis-Rabusseau
#'
#' Maintainer: Andrea Rau <\url{andrea.rau@@jouy.inra.fr}>
#' @references
#' Rau, A. and Maugis-Rabusseau, C. (2016) Transformation and model choice for
#' co-expression analayis of RNA-seq data. bioRxiv, doi: http://dx.doi.org/10.1101/065607.
#'
#' Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux,
#' G. (2015) Co-expression analysis of high-throughput transcriptome sequencing
#' data with Poisson mixture models. Bioinformatics, doi:
#' 10.1093/bioinformatics/btu845.
#'
#' Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011)
#' Clustering high-throughput sequencing data with Poisson mixture models.
#' Inria Research Report 7786. Available at
#' \url{http://hal.inria.fr/inria-00638082}.
#' @keywords models cluster
#' @example /inst/examples/coseq-package.R
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.