Description Usage Arguments Examples
Plot a NormMixClus_K object.
1 2 3 4 5 6 | ## S3 method for class 'NormMixClus_K'
plot(x, y_profiles, K = NULL, threshold = 0.8,
conds = NULL, average_over_conds = FALSE, graphs = c("profiles",
"boxplots", "probapost_boxplots", "probapost_barplots",
"probapost_histogram"), order = FALSE, profiles_order = NULL,
n_row = NULL, n_col = NULL, ...)
|
x |
An object of class |
y_profiles |
y (n x q) matrix of observed profiles for n observations and q variables to be used for graphing |
K |
If desired, the specific cluster number(s) to use for plotting. If |
threshold |
Threshold used for maximum conditional probability; only observations with maximum conditional probability greater than this threshold are visualized |
conds |
Condition labels, if desired |
average_over_conds |
If |
graphs |
Graphs to be produced, one (or more) of the following:
|
order |
If |
profiles_order |
If |
n_row |
Number of rows for plotting layout of line plots and boxplots of profiles.
Note that if |
n_col |
Number of columns for plotting layout of line plots and boxplots of profiles.
Note that if |
... |
Additional optional plotting arguments |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(y=countmat, K=2:4, iter=5, transformation="arcsin")
## Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)
## Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)
## Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(y=countmat, K=2:4, iter=5, transformation="logit")
compareICL(list(run_arcsin, run_logit))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.