Description Usage Arguments Value Author(s) Examples
Calculates the mean and covariance parameters for a normal mixture model of the form pK_Lk_Ck
1 2 |
x |
Object of class |
y_profiles |
y (n x q) matrix of observed profiles for n
observations and q variables, required for |
K |
The model used for parameter estimation for objects |
digits |
Integer indicating the number of decimal places to be used for output |
plot |
If |
... |
Additional optional parameters to pass to |
pi |
Vector of dimension K with the estimated cluster proportions from the Gaussian mixture model, where K is the number of clusters |
mu |
Matrix of dimension K x d containing the estimated mean
vector from the Gaussian mixture model, where d is the
number of samples in the data |
Sigma |
Array of dimension d x d x K containing the
estimated covariance matrices from the Gaussian mixture model, where d is the
number of samples in the data |
rho |
Array of dimension d x d x K containing the
estimated correlation matrices from the Gaussian mixture model, where d is the
number of samples in the data |
Andrea Rau, Cathy Maugis-Rabusseau
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
profiles <- transform_RNAseq(countmat, norm="none",
transformation="arcsin")$tcounts
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3
run <- NormMixClus(y=profiles, K=2:3, iter=5)
## Run the Normal mixture model for K=2
run2 <- NormMixClus_K(y=profiles, K=2, iter=5)
## Re-estimate mixture parameters for the model with K=2 clusters
param <- NormMixParam(run2, y_profiles=profiles)
## Summary of results
summary(run, y_profiles=profiles)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.