Description Usage Arguments Details Author(s) See Also Examples
A function to summarize the clustering results obtained from a Normal mixture model.
1 2 |
object |
An object of class |
y_profiles |
y (n x q) matrix of observed profiles for n observations and q variables |
digits |
Integer indicating the number of decimal places to be used for mixture model parameters |
... |
Additional arguments |
The summary function for an object of class "NormMixClus_K"
provides the
following summary of results:
1) Number of clusters and model selection criterion used, if applicable.
2) Number of observations across all clusters with a maximum conditional probability greater than 90 observations) for the selected model.
3) Number of observations per cluster with a maximum conditional probability greater than 90 cluster) for the selected model.
4) μ values for the selected model.
5) π values for the selected model.
Andrea Rau
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
profiles <- transform_RNAseq(countmat, norm="none",
transformation="arcsin")$tcounts
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3
run <- NormMixClus(y=profiles, K=2:3, iter=5)
## Run the Normal mixture model for K=2
run2 <- NormMixClus_K(y=profiles, K=2, iter=5)
## Re-estimate mixture parameters for the model with K=2 clusters
param <- NormMixParam(run2, y_profiles=profiles)
## Summary of results
summary(run, y_profiles=profiles)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.