Nothing
#######################################################
# INTERNAL
# functions based on descriptions in Auer-Gervini, 2008
fhat <- function(d, Lambda) {
m <- length(Lambda)
use <- Lambda[(d+1):m]
geo <- exp(mean(log(use)))
ari <- mean(use)
(m-d)*log(geo/ari)
}
dhat <- function(theta, Lambda) {
ds <- seq(0, length(Lambda)-1)
vals <- sapply(ds, function(d, theta, Lambda) {
fhat(d, Lambda) + theta*(length(Lambda)-1-d)
}, theta=theta, Lambda=Lambda)
max(ds[which(vals==max(vals))])
}
thetaLower <- function(d, Lambda) {
m <- length(Lambda)
if(d == m - 1) return(0)
fd <- fhat(d, Lambda)
kset <- (d+1):(m-1)
temp <- sapply(kset, function(k) {
(fhat(k, Lambda) - fd) / (k - d)
})
max(temp)
}
thetaUpper <- function(d, Lambda) {
if (d == 0) return(Inf)
m <- length(Lambda)
fd <- fhat(d, Lambda)
kset <- 0:(d-1)
temp <- sapply(kset, function(k) {
(fhat(k, Lambda) - fd) / (k - d)
})
min(temp)
}
#######################################################
# EXTERNAL
# broken-stick model
brokenStick <- function(k, n) {
if (any(n < k)) stop('bad values')
x <- 1/(1:n)
sapply(k, function(k0) sum(x[k0:n])/n)
}
# broken stick to get dimension
bsDimension <- function(lambda, FUZZ=0.005) {
if(inherits(lambda, "SamplePCA")) {
lambda <- lambda@variances
}
N <- length(lambda)
bs <- brokenStick(1:N, N)
fracVar <- lambda/sum(lambda)
which(fracVar - bs < FUZZ)[1] - 1
}
# randomization based model
matPermutate <- function(data) {
n <- nrow(data)
m <- ncol(data)
permat <- data
for (i in 1:m) {
new <- sample(n, n, replace=FALSE)
permat[,i] <- data[,i][new]
}
permat
}
# randomization based model to get dimension
# B is total repeat times for randomization, alpha is significance
# level for p-values
rndLambdaF <- function(data, B=1000, alpha=0.05) {
if (!inherits(data[1,1], "numeric")) {
stop('data elements are not numeric')
}
if (sum(is.na(data)) > 0) {
stop('data contains missing values')
}
m <- ncol(data)
Lambda <- F <- matrix(1e-6, B, m)
spca <- SamplePCA(t(data))
lambda <- sqrt(spca@variances)
if (length(lambda) < m) {
lambda <- c(lambda, rep(1e-6, m - length(lambda)))
}
rescum <- cumsum(sort(lambda, decreasing=FALSE))[1:(m-1)]
Lambda[1, ] <- lambda
F[1,1:(m-1)] <- lambda[1:(m-1)]/sort(rescum, decreasing=TRUE)
for (i in 1:(B-1)) {
rndmat <- matPermutate(data)
spca <- SamplePCA(t(rndmat))
lambda <- sqrt(spca@variances)
if (length(lambda) < m) {
lambda <- c(lambda, rep(1e-6, m - length(lambda)))
}
rescum <- cumsum(sort(lambda, decreasing=FALSE))[1:(m-1)]
Lambda[i+1, ] <- lambda
F[i+1, 1:(m-1)] <- lambda[1:(m-1)]/sort(rescum, decreasing=TRUE)
}
p1 <- apply(Lambda, 2, function(v) {sum(v >= v[1])/length(v)})
p2 <- apply(F, 2, function(v) {sum(v >= v[1])/length(v)})
res <- c(rndLambda=which(p1 > alpha)[1] - 1, rndF=which(p2 > alpha)[1] - 1)
return(res)
}
#######################################################
# S4 interface
setClass("AuerGervini",
slots = c(Lambda="numeric",
dimensions="numeric",
dLevels="numeric",
changePoints="numeric"
))
AuerGervini <- function(Lambda, dd=NULL, epsilon=2e-16) {
if (inherits(Lambda, "SamplePCA")) {
dd <- dim(Lambda@scores)
Lambda <- Lambda@variances
}
if (epsilon > 0) {
Lambda <- Lambda[Lambda > epsilon]
}
Lambda <- rev(sort(Lambda))
rg <- (1:length(Lambda)) - 1
lowerBounds <- sapply(rg, thetaLower, Lambda=Lambda)
upperBounds <- sapply(rg, thetaUpper, Lambda=Lambda)
dLevels <- rev(rg[lowerBounds <= upperBounds])
changePoints <- rev(lowerBounds[lowerBounds <= upperBounds])[-1]
new("AuerGervini", Lambda=Lambda, dimensions = dd,
dLevels=dLevels, changePoints=changePoints)
}
estimateTop <- function(object) {
n <- object@dimensions[1] # nrows
m <- object@dimensions[2] # ncolumns
oldAndCrude <- -2*log(0.01)/n # in case we want to revert
delta <- 1 # why do we do it this way?
magic <- 18.8402+1.9523*m-0.0005*m^2 # from a linear model fit on simulated data
modelBased <- ifelse(n >= m,
magic/n,
magic*n/m^2) # please explain why
max(oldAndCrude,
modelBased,
1.03*object@changePoints)
}
setMethod("plot", c("AuerGervini", "missing"), function(x, y, ...) {
plot(x, list(), ...)
})
# y is an optional argument containing a list of "agDimension"
# computing functions
setMethod("plot", c("AuerGervini", "list"), function(x, y,
main="Bayesian Sensitivity Analysis",
...) {
top <-estimateTop(x)
fun <- stepfun(x@changePoints, x@dLevels)
plot(fun, xlab="Prior Theta", ylab="Number of Components",
main=main, xlim=c(0, top), ...)
if (!missing(y)) {
lapply(y, function(agfun) {
abline(h=agDimension(x, agfun), lty=2, lwd=2, col='pink')
})
}
invisible(x)
})
setMethod("summary", "AuerGervini", function(object, ...) {
cat("An '", class(object), "' object that estimates the number of ",
"principal components to be ", agDimension(object), ".\n", sep="")
})
compareAgDimMethods <- function(object, agfuns) {
unlist(lapply(agfuns, function(f) agDimension(object, f)))
}
agDimension <- function(object, agfun=agDimTwiceMean) {
stepLength <- diff(c(object@changePoints, estimateTop(object)))
if (length(stepLength) > 4) {
magic <- agfun(stepLength)
} else {
magic <- (stepLength == max(stepLength))
}
ifelse(any(magic),
object@dLevels[1+which(magic)[1]],
0)
}
agDimTwiceMean <- function(stepLength) {
(stepLength > 2*mean(stepLength))
}
# k-means criterion (3 different versions)
# version 1: centers are max. and min. (select highest in large group)
agDimKmeans <- function(stepLength) {
kmeanfit <- kmeans(stepLength, centers=c(min(stepLength),
max(stepLength)))
i <- which.max(kmeanfit$centers)
kmeanfit$cluster == i
}
# version 3: choose k=3 if more features (select highest largest)
agDimKmeans3 <- function(stepLength) {
# choose k = 3 if there are many features (extra center is median)
if (ceiling(log(length(stepLength))/2)>2) {
kcenters <- c(min(stepLength),
median(stepLength),
max(stepLength))
} else {
kcenters <- c(min(stepLength),
max(stepLength))
}
kmeanfit <- kmeans(stepLength, centers=kcenters)
# treats intermediate as long and says "don't include short"
i <- which.min(kmeanfit$centers)
kmeanfit$cluster != i
}
#-------------------------------------------------------------------------
# spectral clustering criterion
agDimSpectral <- function(stepLength) {
# project 1D step length sequence onto a 2D line (y=x)
dat <- cbind(X1=stepLength, X2=stepLength)
scfit <- specc(dat, centers=2, mod.sample=1)
scmean1 <- mean(stepLength[scfit==1])
scmean2 <- mean(stepLength[scfit==2])
scnum <- ifelse(scmean1>scmean2, 1, 2)
scfit == scnum
}
#------------------------------------------------------------------------
# naive t-test criterion (2 different versions)
# version 1: naive idea to detect the significant change point in
# difference of sorted step lengths (t-based method)
# TO DO: include significance level alpha in arguments, currently
# set significance level to be 0.01
# for version 2, set extra=1
agDimTtest <- function(stepLength, extra=0) {
sort1 <- sort(stepLength, decreasing=FALSE, method="qu",
index.return=TRUE)
diffsl <- diff(sort1$x)
meanlist <- cumsum(diffsl)[3:length(diffsl)]/(3:length(diffsl))
meannum <- length(meanlist)
iter <- 0
pvec <- NULL
repeat {
if (iter == meannum-1) break
b0 <- iter + 1 + extra
b1 <- b0 + 2
sdvalue <- sd(diffsl[1:(b0 + 2)] - meanlist[b0])
pvalue <- 1 - pt((meanlist[iter + 2] - meanlist[iter + 1]) / (sdvalue/sqrt(b1)),
b1 - 1)
pvec <- c(pvec, pvalue)
if (pvalue < 0.01) break
iter <- iter + 1
}
if (iter < meannum - 1) {
slset <- sort1$ix[(iter+4):length(stepLength)]
magic <- (1:length(stepLength) %in% slset)
} else {
pt <- which.min(pvec)
slset <- sort1$ix[(pt+4):length(stepLength)]
magic <- (1:length(stepLength) %in% slset)
}
magic
}
agDimTtest2 <- function(stepLength) {
agDimTtest(stepLength, extra=1)
}
#-------------------------------------------------------------------------
# changepoint criterion (cpt.mean in changepoint package)
agDimCPT <- function(stepLength) {
sort1 <- sort(stepLength, decreasing=FALSE, method="qu",
index.return=TRUE)
fit <- cpt.mean(sort1$x, Q=2)
cp <- cpts(fit)
if (length(cp) != 0) {
slset <- sort1$ix[(cp+1):length(stepLength)]
magic <- (1:length(stepLength) %in% slset)
} else {
magic <- (stepLength == max(stepLength))
}
magic
}
#------------------------------------------------------------------------
# cpm criterion (use detectChangePointBatch function in cpm package)
# use detectChangePointBatch function to detect the significant change
# point in sorted step lengths, cpmethod is cpmType in the function
agDimCPM <- function(stepLength, cpmethod) {
sort1 <- sort(stepLength, decreasing=FALSE, method="qu",
index.return=TRUE)
fit <- detectChangePointBatch(sort1$x, cpmethod, alpha=0.05,
lambda=NA)
cp <- fit$changePoint
if (fit$changeDetected) {
slset <- sort1$ix[(cp+1):length(stepLength)]
magic <- (1:length(stepLength) %in% slset)
} else {
magic <- (stepLength == max(stepLength))
}
magic
}
makeAgCpmFun <- function(method) {
function(stepLength) {
agDimCPM(stepLength, method)
}
}
#------------------------------------------------------------------------
# another novel method
# agDimLeap <- function(stepLength) {
# N <- length(stepLength)
# sorted <- sort(stepLength)
# cummean <- cumsum(sorted)/(1:N)
# cumsd <- sapply(1:N, function(i) sd(sorted[1:i]))
# p <- 1 - pnorm(sorted[4:N], cummean[3:(N-1)], cumsd[3:(N-1)])
# p <- (N-3)*p # Bonferroni
# if (any( p < 0.01)) { # magic number
# w <- 3 + which(p < 0.01)[1]
# magic <- stepLength >= sorted[w]
# } else {
# magic <- (stepLength == max(stepLength))
# }
# magic
# }
if(0) {
plot(sorted, type='b')
lines(cummean, col='red', type='b')
lines(cummean+3*cumsd, col='blue', type='b')
points(4:20, p, pch=16)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.