pre.process <- function(sampl, sigma.scans){
sigma.model.filter <- round(sigma.scans)
if(is.even(sigma.model.filter)) sigma.model.filter <- sigma.model.filter + 1
filt.order <- 3
if(filt.order>=sigma.model.filter) filt.order <- sigma.model.filter - 1
if(filt.order>=1) sampl <- soft.filter(sampl,filt.order,sigma.model.filter)
sampl[sampl<0] <- 0
k.filt <- trunc(sigma.scans*10)
moving.maximas <- apply(sampl,2,function(x){max(x)})
sampl[,moving.maximas<100] <- 0
sampl <- apply(sampl,2,function(x) removeBaseline(x,k.filt))
sampl[sampl<0] <- 0
sampl
}
#' @importFrom stats sd
removeBaseline <- function (x, k){
if (max(x) == 0) return(x)
x.min <- runningmin(x, k)
k.m <- k
if(k.m>=length(x)) k.m <- length(x) - 1
if (is.even(k.m) == T) k.m <- k.m - 1
x.dupCopy <- c(x[length(x):1],x,x[length(x):1])
x.med <- stats::runmed(x.dupCopy, k.m, endrule='keep')[(length(x)+1):(2*length(x))]
base.sd <- sd(x.min)
x.base <- x.med
x.base[x.base > (x.min + base.sd)] <- x.min[x.base > (x.min + base.sd)] + base.sd
x.base <- runningmean(x.base, k)
x.clean <- x - x.base
x.clean[x.clean < 0] <- 0
x.clean
}
#' @importFrom signal sgolayfilt
soft.filter <- function (mat, p, n = NULL){
if (is.null(n))
n <- p + 3
mat.f <- apply(mat, 2, function(x) sgolayfilt(x, p = p , n = n))
mat.D <- normalize(mat.f)
mat.D <- sweep(mat.D,2,apply(mat,2, max),"*")
mat.D
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.