#' @import BiocGenerics SummarizedExperiment S4Vectors GenomicRanges methods
#' IRanges
NULL
## Helper function for validity checks
.uniqueSortIdentical <- function(charvec1, charvec2) {
listInput <- list(charvec1, charvec2)
listInput <- lapply(listInput, function(x) sort(unique(x)))
return(identical(listInput[[1]], listInput[[2]]))
}
.allIn <- function(charvec1, charvec2) {
return(all(charvec2 %in% charvec1))
}
### ==============================================
### MultiAssayExperiment class
### ----------------------------------------------
#' MultiAssayExperiment - An integrative multi-assay class for experiment data
#'
#' @description
#' The `MultiAssayExperiment` class can be used to manage results of
#' diverse assays on a collection of specimen. Currently, the class can handle
#' assays that are organized instances of
#' [`SummarizedExperiment`][SummarizedExperiment::SummarizedExperiment-class],
#' [ExpressionSet][Biobase::ExpressionSet], `matrix`, `RaggedExperiment`
#' (inherits from [`GRangesList`][GenomicRanges::GRangesList-class]), and
#' `RangedVcfStack`. Create new `MultiAssayExperiment` instances with the
#' homonymous constructor, minimally with the argument [`ExperimentList`],
#' potentially also with the arguments `colData` (see section below) and
#' [`sampleMap`].
#'
#' @details
#' The dots (`...`) argument allows the user to specify additional
#' arguments in several instances.
#' * subsetting **[**: additional arguments sent to
#' [`findOverlaps`][GenomicRanges::findOverlaps-methods].
#' * mergeReplicates: used to specify arguments for the `simplify`
#' functional argument
#' * assay: may contain withDimnames, which is forwarded to assays
#' * combining **c**: compatible `MultiAssayExperiment` classes
#' passed on to the [`ExperimentList`] constructor,
#' can be a `list`, [`List`][S4Vectors::List-class], or a series of
#' named arguments. See the examples below.
#'
#' @section colData:
#' The `colData` slot is a collection of primary specimen data valid
#' across all experiments. This slot is strictly of class
#' [`DataFrame`][S4Vectors::DataFrame-class] but arguments for the constructor
#' function allow arguments to be of class `data.frame` and subsequently
#' coerced.
#'
#' @section ExperimentList:
#' The [`ExperimentList`] slot is designed to contain results from each
#' experiment/assay. It contains a [`SimpleList`][S4Vectors::SimpleList-class].
#'
#' @section sampleMap:
#' The [`sampleMap`] contains a `DataFrame` of translatable
#' identifiers of samples and participants or biological units. The standard
#' column names of the `sampleMap` are "assay", "primary", and "colname".
#' Note that the "assay" column is a factor corresponding to the names of each
#' experiment in the `ExperimentList`. In the case where these names do
#' not match between the `sampleMap` and the experiments, the documented
#' experiments in the `sampleMap` take precedence and experiments are
#' dropped by the harmonization procedure. The constructor function will
#' generate a `sampleMap` in the case where it is not provided and this
#' method may be a 'safer' alternative for creating the `MultiAssayExperiment`
#' (so long as the rownames are identical in the `colData`, if provided).
#' An empty `sampleMap` may produce empty experiments if the levels of the
#' "assay" factor in the `sampleMap` do not match the names in the
#' `ExperimentList`.
#'
#' @slot ExperimentList A [`ExperimentList`] class object for
#' each assay dataset
#'
#' @slot colData A `DataFrame` of all clinical/specimen data available
#' across experiments
#'
#' @slot sampleMap A `DataFrame` of translatable identifiers
#' of samples and participants
#'
#' @slot metadata Additional data describing the
#' `MultiAssayExperiment` object
#'
#' @slot drops A metadata `list` of dropped information
#'
#' @param object,x A `MultiAssayExperiment` object
#'
#' @param ... Additional arguments for supporting functions. See details.
#'
#' @return A `MultiAssayExperiment` object
#'
#' @examples
#' example("MultiAssayExperiment")
#'
#' ## Subsetting
#' # Rows (i) Rows/Features in each experiment
#' mae[1, , ]
#' mae[c(TRUE, FALSE), , ]
#'
#' # Columns (j) Rows in colData
#' mae[, rownames(colData(mae))[3:2], ]
#'
#' # Assays (k)
#' mae[, , "Affy"]
#'
#' ## Complete cases (returns logical vector)
#' completes <- complete.cases(mae)
#' compMAE <- mae[, completes, ]
#' compMAE
#' colData(compMAE)
#'
#' @exportClass MultiAssayExperiment
#'
#' @seealso [MultiAssayExperiment-methods] for slot modifying methods,
#' \href{https://github.com/waldronlab/MultiAssayExperiment/wiki/MultiAssayExperiment-API}{MultiAssayExperiment API}
#'
#' @include ExperimentList-class.R
setClass(
"MultiAssayExperiment",
contains = "Annotated",
slots = list(
ExperimentList = "ExperimentList",
colData = "DataFrame",
sampleMap = "DataFrame",
drops = "list"
),
prototype = prototype(
colData = new("DFrame"),
sampleMap = new("DFrame")
)
)
### ==============================================
### MultiAssayExperiment constructor
### ----------------------------------------------
.harmonize <- function(experiments, colData, sampleMap) {
harmony <- character()
## sampleMap assays agree with experiment names
assay <- intersect(levels(sampleMap[["assay"]]), names(experiments))
keep_sampleMap_assay <- sampleMap[["assay"]] %in% assay
if (!all(keep_sampleMap_assay)) {
sampleMap <- sampleMap[keep_sampleMap_assay, , drop=FALSE]
sampleMap[["assay"]] <- factor(sampleMap[["assay"]], levels=assay)
harmony <- c(
harmony,
paste("removing", sum(!keep_sampleMap_assay),
"sampleMap rows not in names(experiments)"))
}
## sampleMap colname agrees with experiment colnames
grp <- droplevels(sampleMap[["assay"]])
colnm <- split(sampleMap[["colname"]], grp)
keep <- Map(intersect, colnm, colnames(experiments)[names(colnm)])
keep_sampleMap_colname <- logical(nrow(sampleMap))
split(keep_sampleMap_colname, grp) <- Map("%in%", colnm, keep)
if (!all(keep_sampleMap_colname)) {
sampleMap <- sampleMap[keep_sampleMap_colname, , drop=FALSE]
harmony <- c(
harmony,
paste("removing", sum(!keep_sampleMap_colname),
"sampleMap rows with 'colname'",
"not in colnames of experiments"))
}
## sampleMap primary agrees with primary
primary <- intersect(rownames(colData), sampleMap[["primary"]])
keep_sampleMap_primary <- sampleMap[["primary"]] %in% primary
if (!all(keep_sampleMap_primary)) {
sampleMap <- sampleMap[keep_sampleMap_primary, , drop=FALSE]
harmony <- c(
harmony,
paste("removing", sum(!keep_sampleMap_primary),
"sampleMap rows with 'primary' not in colData"))
}
## update objects
assay <- intersect(names(experiments), levels(sampleMap[["assay"]]))
experiments_columns <- split(sampleMap[["colname"]], sampleMap[["assay"]])
primary <- intersect(rownames(colData), sampleMap[["primary"]])
keep_colData <- rownames(colData) %in% primary
if (!all(keep_colData)) {
colData <- colData[keep_colData, , drop = FALSE]
harmony <- c(
harmony,
paste("removing", sum(!keep_colData),
"colData rownames not in sampleMap 'primary'"))
}
experiments <- mendoapply(function(x, idx) {
colmatch <- colnames(x) %in% idx
if (!all(colmatch))
x <- x[, colmatch, drop=FALSE]
x
}, experiments[assay], experiments_columns[assay])
if (length(harmony))
message("harmonizing input:\n ", paste(harmony, collapse="\n "))
list(experiments=experiments, sampleMap=sampleMap, colData=colData)
}
.checkFixSampleMap <- function(samplemap) {
samplemap <- as(samplemap, "DataFrame")
smapnames <- c("assay", "primary", "colname")
if (!all(smapnames %in% colnames(samplemap)))
stop("'sampleMap' does not have required columns")
if (!identical(colnames(samplemap), smapnames))
samplemap <- samplemap[, smapnames]
.smapColumnCoerce(samplemap)
}
.smapColumnCoerce <- function(samplemap) {
isfuns <- list(is.factor, is.character, is.character)
colsOK <- mapply(
FUN = function(fun, X) { fun(X) }, fun = isfuns, X = samplemap
)
if (all(colsOK))
return(samplemap)
asfuns <- list(
as.factor = as.factor,
as.character = as.character,
as.character = as.character
)
samplemap[] <- Map(
function(cName, isFun, coerceFun, funname) {
smapCol <- samplemap[[cName]]
if (!isFun(smapCol))
warning(
"sampleMap[['", cName, "']] coerced with ", funname, "()",
call. = FALSE
)
samplemap[[cName]] <- coerceFun(samplemap[[cName]])
},
cName = names(samplemap),
isFun = isfuns,
coerceFun = asfuns,
funname = names(asfuns)
)
samplemap
}
#' Construct an integrative representation of multi-omic data with
#' `MultiAssayExperiment`
#'
#' The constructor function for the [MultiAssayExperiment-class] combines
#' multiple data elements from the different hierarchies of data
#' (study, experiments, and samples). It can create instances where neither
#' a `sampleMap` or a `colData` set is provided. Please see the
#' MultiAssayExperiment API documentation for more information.
#'
#' @section colData:
#' The `colData` input can be either `DataFrame` or `data.frame` with
#' subsequent coercion to DataFrame. The rownames in the `colData` must match
#' the colnames in the experiments if no sampleMap is provided.
#'
#' @section experiments:
#' The `experiments` input can be of class
#' [`SimpleList`][S4Vectors::SimpleList-class] or `list`. This input becomes the
#' [`ExperimentList`]. Each element of the input `list` or `List` must be named,
#' rectangular with two dimensions, and have `dimnames`.
#'
#' @section sampleMap:
#' The [`sampleMap`] can either be input as `DataFrame` or
#' `data.frame` with eventual coercion to `DataFrame`. The `sampleMap` relates
#' biological units and biological measurements within each assay. Each row in
#' the `sampleMap` is a single such link. The standard column names of the
#' `sampleMap` are "assay", "primary", and "colname". Note that the "assay"
#' column is a factor corresponding to the names of each experiment in the
#' `ExperimentList`. In the case where these names do not match between the
#' `sampleMap` and the experiments, the documented experiments in the
#' `sampleMap` take precedence and experiments are dropped by the harmonization
#' procedure. The constructor function will generate a `sampleMap` in the case
#' where it is not provided and this method may be a 'safer' alternative for
#' creating the `MultiAssayExperiment` (so long as the rownames are identical
#' in the `colData`, if provided). An empty `sampleMap` may produce empty
#' experiments if the levels of the "assay" factor in the `sampleMap` do not
#' match the names in the `ExperimentList`.
#'
#' @param experiments A `list` or [`ExperimentList`] of all
#' combined experiments
#'
#' @param colData A [`DataFrame`][S4Vectors::DataFrame-class] or
#' \code{data.frame} of characteristics for all biological units
#'
#' @param sampleMap A [`DataFrame`][S4Vectors::DataFrame-class] or
#' \code{data.frame} of assay names, sample identifiers, and colname samples
#'
#' @param metadata An optional argument of "ANY" class (usually list) for
#' content describing the experiments
#'
#' @param drops A `list` of unmatched information
#' (included after subsetting)
#'
#' @return A `MultiAssayExperiment` object that can store
#' experiment and phenotype data
#'
#' @example inst/scripts/MultiAssayExperiment-Ex.R
#'
#' @export MultiAssayExperiment
#' @seealso [MultiAssayExperiment-class]
MultiAssayExperiment <-
function(
experiments = ExperimentList(),
colData = S4Vectors::DataFrame(),
sampleMap = S4Vectors::DataFrame(
assay = factor(),
primary = character(),
colname = character()
),
metadata = list(),
drops = list()
)
{
experiments <- as(experiments, "ExperimentList")
allsamps <- unique(unlist(unname(colnames(experiments))))
if (missing(sampleMap)) {
if (missing(colData))
colData <- S4Vectors::DataFrame(row.names = allsamps)
sampleMap <- .sampleMapFromData(colData, experiments)
} else {
if (missing(colData))
colData <- S4Vectors::DataFrame(
row.names = unique(sampleMap[["primary"]])
)
}
sampleMap <- .checkFixSampleMap(sampleMap)
colData <- as(colData, "DataFrame")
bliss <- .harmonize(experiments, colData, sampleMap)
new("MultiAssayExperiment",
ExperimentList = bliss[["experiments"]],
colData = bliss[["colData"]],
sampleMap = bliss[["sampleMap"]],
metadata = metadata)
}
### - - - - - - - - - - - - - - - - - - - - - - - -
### Validity
###
## EXPERIMENTLIST
## 1.i. ExperimentList length must be the same as the unique length of the
## sampleMap "assay" column.
.checkExperimentList <- function(object) {
errors <- character()
assays <- levels(sampleMap(object)[["assay"]])
if (!is.null(assays) &&
!identical(length(experiments(object)), length(assays))) {
msg <- paste0("ExperimentList must be the same length as",
" the sampleMap assay column")
errors <- c(errors, msg)
}
## 1.ii. Element names of the ExperimentList should be found in the
## sampleMap "assay" column.
if (!is.null(assays) && !all(names(experiments(object)) %in% assays)) {
msg <- paste0("All ExperimentList names were not found in",
" the sampleMap assay column")
errors <- c(errors, msg)
}
## 1.iii. ExperimentList cannot have any non-empty elements when the sampleMap
## is empty.
if (isEmpty(sampleMap(object)) && !isEmpty(experiments(object))) {
msg <- paste0(
"All non-empty elements in the ExperimentList must have",
" names in the sampleMap assay column"
)
errors <- c(errors, msg)
}
if (!length(errors)) NULL else errors
}
.id_sort_uniq <- function(x, y) {
identical(
sort(unique(x)), sort(unique(y))
)
}
## 1.iii. For each ExperimentList element, colnames must be found in the
## "assay" column of the sampleMap
.checkSampleNames <- function(object) {
sampMap <- sampleMap(object)
assayCols <- mapToList(sampMap[, c("assay", "colname")])
colNams <- Filter(function(x) !isEmpty(x), colnames(object))
msg <- NULL
if (length(colNams)) {
logicResult <- mapply(function(x, y) {
.id_sort_uniq(x = x, y = y)
}, x = colNams, y = assayCols[names(colNams)])
if (!all(logicResult))
msg <- "not all ExperimentList samples are found in the sampleMap"
}
msg
}
## COLDATA
## 2.i. See setClass above where colData = "DataFrame"
## SAMPLEMAP
## 3.i. all values in the sampleMap "primary" column must be found in the
## rownames of colData
## 3.i.a sampleMap assay column must be a factor
.checkSampleMapNamesClass <- function(object) {
errors <- character()
if (!(.allIn(
rownames(colData(object)),
sampleMap(object)[["primary"]]
))) {
msg <- "All 'sampleMap[[primary]]' must be in 'rownames(colData)'"
errors <- c(errors, msg)
}
if (!is.factor(sampleMap(object)[["assay"]])) {
msg <- "'sampleMap' assay column not a factor"
errors <- c(errors, msg)
}
if (!length(errors)) NULL else errors
}
## 3.ii. Within rows of "sampleMap" corresponding to a single value in the
## "assay" column, there can be no duplicated values in the "colname" column
.uniqueNamesInAssays <- function(object) {
lcheckdups <- colnames(object)
logchecks <- any(vapply(lcheckdups, FUN = function(x) {
as.logical(anyDuplicated(x))
}, FUN.VALUE = logical(1L)))
if (!logchecks)
NULL
else
"All colname identifiers in assays must be unique"
}
.validMultiAssayExperiment <- function(object) {
if (length(experiments(object)) != 0L) {
c(.checkExperimentList(object),
.checkSampleMapNamesClass(object),
.uniqueNamesInAssays(object),
.checkSampleNames(object)
)
}
}
S4Vectors::setValidity2("MultiAssayExperiment", .validMultiAssayExperiment)
.hasOldAPI <- function(object) {
isTRUE(.hasSlot(object, "Elist")) || isTRUE(.hasSlot(object, "pData"))
}
#' @exportMethod show
#' @describeIn MultiAssayExperiment Show method for a
#' `MultiAssayExperiment`
setMethod("show", "MultiAssayExperiment", function(object) {
if (.hasOldAPI(object)) {
stop("MultiAssayExperiment is outdated, please run updateObject()")
}
o_class <- class(object)
o_len <- length(object)
o_names <- names(object)
if (!length(o_names)) {
o_names <- "none"
}
c_elist <- class(experiments(object))
c_mp <- class(colData(object))
c_sm <- class(sampleMap(object))
cat(sprintf("A %s", o_class),
"object of", o_len, "listed\n",
ifelse(o_len == 1L, "experiment", "experiments"),
"with",
ifelse(identical(o_names, "none"), "no user-defined names",
ifelse(length(o_names) == 1L, "a user-defined name",
"user-defined names")),
ifelse(length(o_len) == 0L, "or", "and"),
ifelse(length(o_len) == 0L, "classes.",
ifelse(o_len == 1L,
"respective class.\n", "respective classes.\n")),
"Containing an ")
show(experiments(object))
cat("Functionality:\n experiments() - obtain the ",
sprintf("%s", c_elist), " instance",
"\n colData() - the primary/phenotype DataFrame",
"\n sampleMap() - the sample coordination DataFrame",
"\n `$`, `[`, `[[` - extract colData columns, subset, or experiment",
"\n *Format() - convert ", "into a long or wide DataFrame",
"\n assays() - convert ", sprintf("%s", c_elist),
" to a SimpleList of matrices",
"\n exportClass() - save data to flat files\n",
sep = "")
})
#' @name MultiAssayExperiment-methods
#' @title Accessing and modifying information in MultiAssayExperiment
#'
#' @description A set of accessor and setter generic functions to extract
#' either the `sampleMap`, the [`ExperimentList`],
#' `colData`, or `metadata` slots of a
#' [`MultiAssayExperiment`] object
#'
#' @section Accessors:
#' Eponymous names for accessing `MultiAssayExperiment` slots with the
#' exception of the [`ExperimentList`] accessor named `experiments`.
#' * colData: Access the `colData` slot
#' * sampleMap: Access the `sampleMap` slot
#' * experiments: Access the [`ExperimentList`] slot
#' * `[[`: Access the [`ExperimentList`] slot
#' * `$`: Access a column in `colData`
#' * `drops`: Get a vector of dropped [`ExperimentList`] names
#'
#' @section Setters:
#' Setter method values (i.e., '\code{function(x) <- value}'):
#' * experiments<-: An [`ExperimentList`] object
#' containing experiment data of supported classes
#' * sampleMap<-: A [`DataFrame`][S4Vectors::DataFrame-class] object relating
#' samples to biological units and assays
#' * colData<-: A [`DataFrame`][S4Vectors::DataFrame-class] object describing
#' the biological units
#' * metadata<-: A `list` object of metadata
#' * `[[<-`: Equivalent to the \code{experiments<-} setter method for
#' convenience
#' * `$<-`: A vector to replace the indicated column in `colData`
#' * `drops<-`: Trace [`ExperimentList`] names that have been
#' removed
#'
#' @param object,x A `MultiAssayExperiment` object
#'
#' @param name A column in `colData`
#'
#' @param value See details.
#'
#' @param ... Argument not in use
#'
#' @return Accessors: Either a `sampleMap`, `ExperimentList`, or
#' `DataFrame` object
#' @return Setters: A `MultiAssayExperiment` object
#'
#' @example inst/scripts/MultiAssayExperiment-methods-Ex.R
#'
#' @aliases experiments sampleMap experiments<- sampleMap<- drops drops<-
NULL
### - - - - - - - - - - - - - - - - - - - - - - -
### Accessor methods
###
#' @export
setGeneric("sampleMap", function(x) standardGeneric("sampleMap"))
#' @exportMethod sampleMap
#' @rdname MultiAssayExperiment-methods
setMethod("sampleMap", "MultiAssayExperiment", function(x)
getElement(x, "sampleMap"))
#' @export
setGeneric("experiments", function(x) standardGeneric("experiments"))
#' @exportMethod experiments
#' @rdname MultiAssayExperiment-methods
setMethod("experiments", "MultiAssayExperiment", function(x)
getElement(x, "ExperimentList"))
#' @exportMethod colData
#' @rdname MultiAssayExperiment-methods
setMethod("colData", "MultiAssayExperiment", function(x, ...) {
getElement(x, "colData")
})
#' @export
setGeneric("drops", function(x) standardGeneric("drops"))
#' @exportMethod drops
#' @rdname MultiAssayExperiment-methods
setMethod("drops", "MultiAssayExperiment", function(x) {
getElement(x, "drops")
})
### - - - - - - - - - - - - - - - - - - - - - - - -
### Getters
###
#' @exportMethod length
#' @describeIn MultiAssayExperiment Get the length of ExperimentList
setMethod("length", "MultiAssayExperiment", function(x)
length(experiments(x))
)
#' @exportMethod names
#' @describeIn MultiAssayExperiment Get the names of the ExperimentList
setMethod("names", "MultiAssayExperiment", function(x)
names(experiments(x))
)
### - - - - - - - - - - - - - - - - - - - - - - - -
### Replacers
###
#' @export
setGeneric("sampleMap<-", function(object, value)
standardGeneric("sampleMap<-"))
#' @exportMethod sampleMap<-
#' @rdname MultiAssayExperiment-methods
setReplaceMethod("sampleMap", c("MultiAssayExperiment", "DataFrame"),
function(object, value) {
if (isEmpty(value))
value <- DataFrame(assay = factor(), primary = character(),
colname = character())
rebliss <- .harmonize(experiments(object),
colData(object),
value)
BiocBaseUtils::setSlots(object,
ExperimentList = rebliss[["experiments"]],
colData = rebliss[["colData"]],
sampleMap = rebliss[["sampleMap"]],
check = FALSE
)
}
)
#' @rdname MultiAssayExperiment-methods
setReplaceMethod("sampleMap", c("MultiAssayExperiment", "ANY"),
function(object, value) {
stopifnot(is.data.frame(value))
value <- as(value, "DataFrame")
`sampleMap<-`(object, value)
}
)
#' @export
setGeneric("experiments<-", function(object, value)
standardGeneric("experiments<-"))
#' @export
#' @rdname MultiAssayExperiment-methods
setGeneric("drops<-", function(x, ..., value) standardGeneric("drops<-"))
#' @exportMethod experiments<-
#' @rdname MultiAssayExperiment-methods
setReplaceMethod("experiments", c("MultiAssayExperiment", "ExperimentList"),
function(object, value) {
if (!any(names(object) %in% names(value)) && !isEmpty(object)) {
if (isEmpty(drops(object)))
warning("'experiments' dropped; see 'drops()'", call. = FALSE)
drops(object) <-
list(experiments = setdiff(names(object), names(value)))
}
o_cnames <- colnames(object)
v_cnames <- colnames(value)
if (identical(o_cnames, v_cnames)) {
BiocBaseUtils::setSlots(
object = object,
ExperimentList = value,
check = FALSE
)
} else {
samplemap <- sampleMap(object)
if (all(names(o_cnames) %in% names(v_cnames))) {
levels <- names(v_cnames)
ordernames <- names(Filter(length, v_cnames))
samplemap <- listToMap(mapToList(samplemap)[ordernames])
samplemap[["assay"]] <-
factor(samplemap[["assay"]], levels = levels)
}
rebliss <- .harmonize(value, colData(object), samplemap)
BiocBaseUtils::setSlots(
object = object,
ExperimentList = rebliss[["experiments"]],
colData = rebliss[["colData"]],
sampleMap = rebliss[["sampleMap"]],
check = FALSE
)
}
}
)
#' @exportMethod experiments<-
#' @rdname MultiAssayExperiment-methods
setReplaceMethod("experiments", c("MultiAssayExperiment", "List"),
function(object, value) {
value <- as(value, "ExperimentList")
experiments(object) <- value
object
}
)
#' @exportMethod colData<-
#' @rdname MultiAssayExperiment-methods
setReplaceMethod("colData", c("MultiAssayExperiment", "DataFrame"),
function(x, ..., value) {
x_rnames <- rownames(colData(x))
v_rnames <- rownames(value)
if (!any(v_rnames %in% x_rnames) && !isEmpty(value))
stop("'rownames(value)' have no match in 'rownames(colData)';\n ",
"See '?renamePrimary' for renaming primary units")
if (identical(x_rnames, v_rnames))
BiocBaseUtils::setSlots(
object = x,
colData = value,
check = FALSE
)
else {
rebliss <- .harmonize(experiments(x), value, sampleMap(x))
BiocBaseUtils::setSlots(
object = x,
ExperimentList = rebliss[["experiments"]],
colData = rebliss[["colData"]],
sampleMap = rebliss[["sampleMap"]],
check = FALSE
)
}
}
)
#' @rdname MultiAssayExperiment-methods
setReplaceMethod("colData", c("MultiAssayExperiment", "ANY"),
function(x, ..., value) {
if (!is.data.frame(value))
stop("'colData' can be either 'data.frame' or 'DataFrame'")
else
value <- as(value, "DataFrame")
`colData<-`(x, value = value)
}
)
#' @exportMethod drops<-
#' @rdname MultiAssayExperiment-methods
setReplaceMethod("drops", c("MultiAssayExperiment", "ANY"),
function(x, ..., value) {
anydrops <- getElement(x, "drops")[["experiments"]]
if (length(anydrops))
value[["experiments"]] <- union(anydrops, value[["experiments"]])
slot(x, "drops") <- value
return(x)
})
#' @exportMethod $<-
#' @rdname MultiAssayExperiment-methods
setReplaceMethod("$", "MultiAssayExperiment", function(x, name, value) {
colData(x)[[name]] <- value
return(x)
})
#' @exportMethod names<-
#' @rdname MultiAssayExperiment-methods
setReplaceMethod("names", c("MultiAssayExperiment", "ANY"),
function(x, value)
{
if (!is.character(value))
stop("'value' must be a character vector",
"in names(x) <- value")
if (length(value) != length(x))
stop("experiment names and experiments not equal in length")
explist <- experiments(x)
oldNames <- names(explist)
names(explist) <- value
sampmap <- sampleMap(x)
map <- .setNames(value, oldNames)
sampmap[, "assay"] <-
factor(unname(map[sampmap[["assay"]]]), levels = value)
BiocBaseUtils::setSlots(x,
ExperimentList = explist,
sampleMap = sampmap,
check = FALSE)
})
#' @exportMethod colnames<-
#' @rdname MultiAssayExperiment-methods
setReplaceMethod("colnames", c("MultiAssayExperiment", "List"),
function(x, value)
{
if (!is(value, "CharacterList"))
stop("'value' must be a 'CharacterList' in 'colnames(x) <- value'")
if (length(value) != length(x))
stop("'colnames(x)' and 'value' not equal in length")
cnames <- colnames(x)
if (!identical(lengths(value), lengths(cnames)))
stop("'value' names and lengths should all be identical to 'names(x)'")
samplemap <- sampleMap(x)
splitmap <- mapToList(samplemap)
splitmap <- Map(function(x, y) {
x[["colname"]] <- y
x
}, x = splitmap, y = value)
exps <- experiments(x)
exps <- S4Vectors::mendoapply(function(x, y) {
colnames(x) <- y
x
}, x = exps, y = value)
BiocBaseUtils::setSlots(
object = x,
ExperimentList = exps,
sampleMap = listToMap(splitmap)
)
})
#' @exportMethod colnames<-
#' @rdname MultiAssayExperiment-methods
setReplaceMethod("colnames", c("MultiAssayExperiment", "list"),
function(x, value)
{
value <- as(value, "CharacterList")
colnames(x) <- value
x
})
#' @exportMethod updateObject
#'
#' @param verbose logical (default FALSE) whether to print extra messages
#'
#' @describeIn MultiAssayExperiment Update old serialized MultiAssayExperiment
#' objects to new API
setMethod("updateObject", "MultiAssayExperiment",
function(object, ..., verbose = FALSE) {
if (verbose)
message("updateObject(object = 'MultiAssayExperiment')")
oldEL <- try(object@ExperimentList, silent = TRUE)
if (is(oldEL, "try-error")) {
explist <- ExperimentList(object@Elist@listData)
samplemap <- .checkFixSampleMap(object@sampleMap)
} else {
explist <- experiments(object)
samplemap <- sampleMap(object)
}
oldCD <- try(object@colData, silent = TRUE)
if (is(oldCD, "try-error"))
coldata <- object@pData
else
coldata <- colData(object)
explist <- updateObject(explist, ..., verbose = verbose)
coldata <- updateObject(coldata, ..., verbose = verbose)
samplemap <- updateObject(samplemap, ..., verbose = verbose)
BiocBaseUtils::setSlots(
object,
ExperimentList = explist,
colData = coldata,
sampleMap = samplemap,
check=FALSE
)
}
)
.mergeColData <- function(inlist) {
CDbyEXP <- lapply(names(inlist),
function(i, x) {
tryCatch({
S4Vectors::DataFrame(colData(x[[i]]), experiment_name = i)
}, error = function(e) {
S4Vectors::DataFrame(row.names = colnames(x[[i]]))
} )
}, x = inlist
)
colDatas <- Filter(function(y) { !isEmpty(y) }, CDbyEXP)
if (length(colDatas)) {
rnames <- unlist(lapply(colDatas, rownames))
res <- Reduce(function(x, y) {
S4Vectors::merge(
x, y, by = intersect(names(x), names(y)),
all = TRUE, sort = FALSE
)
}, colDatas)
rownames(res) <- rnames
} else {
res <- S4Vectors::DataFrame(
row.names = unlist(lapply(CDbyEXP, rownames))
)
}
res
}
#' @rdname MultiAssayExperiment-class
#'
#' @name coerce-MultiAssayExperiment
#'
#' @aliases coerce,list,MultiAssayExperiment-method
#' coerce,List,MultiAssayExperiment-method
#'
#' @section
#' coercion:
#' Convert a `list` or S4 `List` to a MultiAssayExperiment object using the
#' [methods::as] function.
#'
#' In the following example, `x` is either a `list` or
#' [`List`][S4Vectors::List-class]:
#'
#' `as(x, "MultiAssayExperiment")`
#'
#' Convert a `MultiAssayExperiment` to `MAF` class object using the
#' [methods::as] function.
#'
#' In the following example, `x` is a `MultiAssayExperiment`:
#'
#' `MultiAssayExperimentToMAF(x)`
#'
#' @exportMethod coerce
setAs("list", "MultiAssayExperiment", function(from) {
newfrom <- as(from, "List")
as(newfrom, "MultiAssayExperiment")
}
)
setAs("List", "MultiAssayExperiment", function(from) {
metaf <- metadata(from)
explist <- as(from, "ExperimentList")
colData <- .mergeColData(from)
MultiAssayExperiment(
experiments = explist, colData = colData, metadata = metaf
)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.