View source: R/plottingFunctions.R
minFragCart2Polar | R Documentation |
Calculates the nearest feature in polar coordinates given cartesian coordinates.
minFragCart2Polar(x, y, degreeOfFeatures)
x |
|
y |
|
degreeOfFeatures |
|
minFragCart2Polar
is employed to find the feature with
the smallest distance from given cartesian coordinates.
minFragCart2Polar
returns the index of the feature that has the
smallest distance to the given coordinates. As minFragCart2Polar
is
used in shinyCircos
for the track 1 only polar r
coordinates
between 0.8 and 1 will be used to find the feature with smallest distance.
Thomas Naake, thomasnaake@googlemail.com
library("MsCoreUtils")
data("spectra", package = "MetCirc")
## create similarity matrix
similarityMat <- Spectra::compareSpectra(sps_tissue[1:10],
FUN = MsCoreUtils::ndotproduct, ppm = 20, m = 0.5, n = 2)
rownames(similarityMat) <- colnames(similarityMat) <- sps_tissue$name[1:10]
linkDf <- createLinkDf(similarityMatrix = similarityMat,
sps = sps_tissue[1:10],
condition = c("SPL", "LIM", "ANT", "STY"), lower = 0.5, upper = 1)
## cut link data.frame (here: only display links between groups)
linkDf_cut <- cutLinkDf(linkDf, type = "inter")
groupname <- c(as.character(linkDf_cut[, "spectrum1"]),
as.character(linkDf_cut[, "spectrum2"]))
groupname <- unique(groupname)
## set circlize parameters
circos.clear()
circos.par(gap.degree = 0, cell.padding = c(0.0, 0, 0.0, 0),
track.margin = c(0.0, 0))
plotCircos(groupname, NULL, initialize = TRUE, featureNames = FALSE,
groupName = FALSE, groupSector = FALSE, links = FALSE, highlight = FALSE)
x <- 1
y <- 0
degreeFeatures <- lapply(groupname,
function(x)
mean(circlize:::get.sector.data(x)[c("start.degree", "end.degree")]))
minFragCart2Polar(x, y, degreeOfFeatures = degreeFeatures)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.