R/dpt.r

Defines functions dpt_for_branch dummy_dpt DPT

Documented in DPT

#' Diffusion Pseudo Time
#'
#' Create pseudotime ordering and assigns cell to one of three branches
#'
#' Treat it as a matrix of pseudotime by subsetting (\code{\link[=dim.DPT]{[ dim nrow ncol}} \code{\link[=as.matrix.DPT]{as.matrix}}), and as a list of pseudodime, and expression vectors (\code{\link[=names.DPT]{$ [[ names}} \code{\link[=as.data.frame.DPT]{as.data.frame}}).
#'
#' @param dm       A \code{\link{DiffusionMap}} object. Its transition probabilities will be used to calculate the DPT
#' @param tips     The cell index/indices from which to calculate the DPT(s) (integer of length 1-3)
#' @param ...      Unused. All parameters to the right of the \code{...} have to be specified by name (e.g. \code{DPT(dm, w_width = 0.2)})
#' @param w_width  Window width to use for deciding the branch cutoff
#'
#' @return A \code{DPT} object:
#'
#' @slot branch  \code{\link[base]{matrix}} (of \code{\link[base]{integer}}) recursive branch labels for each cell (row); \code{NA} for undeceided. Use \code{\link{branch_divide}} to modify this.
#' @slot tips    \code{\link[base]{matrix}} (of \code{\link[base]{logical}}) indicating if a cell (row) is a tip of the corresponding banch level (col)
#' @slot dm      \code{\link{DiffusionMap}} used to create this DPT object
#'
#' @examples
#' data(guo_norm)
#' dm <- DiffusionMap(guo_norm)
#' dpt <- DPT(dm)
#' str(dpt)
#'
#' @importFrom methods setClass
#' @rdname DPT
#' @export
setClass(
	'DPT',
	slots = c(
		branch = 'matrix', # 'integer'
		tips   = 'matrix', # 'logical'
		dm     = 'DiffusionMap'),
	validity = function(object) {
		TRUE  # TODO
	})

#' @rdname DPT
#' @export
DPT <- function(dm, tips = random_root(dm), ..., w_width = .1) { # nolint: object_name_linter.
	chkDots(...)
	if (!is(dm, 'DiffusionMap')) stop('dm needs to be of class DiffusionMap, not ', class(dm))
	if (!length(tips) %in% 1:3) stop('you need to specify 1-3 tips, got ', length(tips))

	dpt <- dummy_dpt(dm)
	all_cells <- seq_len(nrow(dpt))

	stats <- tipstats(dpt, all_cells, tips)
	branches <- auto_branch(dpt, all_cells, stats, w_width)

	colnames(branches$branch) <- paste0('Branch', seq_len(ncol(branches$branch)))
	colnames(branches$tips)   <- paste0('Tips',   seq_len(ncol(branches$tips)))

	rownames(branches$branch) <- rownames(branches$tips) <- rownames(dm@eigenvectors)
	dpt@branch <- branches$branch
	dpt@tips   <- branches$tips
	dpt
}

dummy_dpt <- function(dm_or_dpt) {
	if (is(dm_or_dpt, 'DPT')) dm_or_dpt
	else if (is(dm_or_dpt, 'DiffusionMap')) new('DPT', branch = matrix(), tips = matrix(), dm = dm_or_dpt)
	else stop('dm_or_dpt needs to be DPT or DiffusionMap object, not ', class(dm_or_dpt))
}

dpt_for_branch <- function(dpt, branch_id) {
	branch_idx <- dpt@branch[, 1L] == branch_id
	stopifnot(any(branch_idx))
	tip_cells <- which(branch_idx & dpt@tips[, 1L])
	if (length(tip_cells) == 0L) tip_cells <- which(branch_idx)
	dpt[tip_cells[[1L]], ]
}
theislab/destiny documentation built on Nov. 19, 2024, 5:43 a.m.