plot_differential_map | R Documentation |
plot(gene_relevance, 'Gene')
plots the differential map of this/these gene(s),
plot(gene_relevance)
a relevance map of a selection of genes.
Alternatively, you can use plot_differential_map
or plot_gene_relevance
on a GeneRelevance
or DiffusionMap
object, or with two matrices.
plot_differential_map(
coords,
exprs,
...,
genes,
dims = 1:2,
pal = hcl.colors,
faceter = facet_wrap(~Gene)
)
## S4 method for signature 'matrix,matrix'
plot_differential_map(
coords,
exprs,
...,
genes,
dims = 1:2,
pal = hcl.colors,
faceter = facet_wrap(~Gene)
)
## S4 method for signature 'DiffusionMap,missing'
plot_differential_map(
coords,
exprs,
...,
genes,
dims = 1:2,
pal = hcl.colors,
faceter = facet_wrap(~Gene)
)
## S4 method for signature 'GeneRelevance,missing'
plot_differential_map(
coords,
exprs,
...,
genes,
dims = 1:2,
pal = hcl.colors,
faceter = facet_wrap(~Gene)
)
plot_gene_relevance(
coords,
exprs,
...,
iter_smooth = 2L,
n_top = 10L,
genes = NULL,
dims = 1:2,
pal = palette(),
col_na = "grey",
limit = TRUE
)
## S4 method for signature 'matrix,matrix'
plot_gene_relevance(
coords,
exprs,
...,
iter_smooth = 2L,
n_top = 10L,
genes = NULL,
dims = 1:2,
pal = palette(),
col_na = "grey",
limit = TRUE
)
## S4 method for signature 'DiffusionMap,missing'
plot_gene_relevance(
coords,
exprs,
...,
iter_smooth = 2L,
n_top = 10L,
genes = NULL,
dims = 1:2,
pal = palette(),
col_na = "grey",
limit = TRUE
)
## S4 method for signature 'GeneRelevance,missing'
plot_gene_relevance(
coords,
exprs,
...,
iter_smooth = 2L,
n_top = 10L,
genes = NULL,
dims = 1:2,
pal = palette(),
col_na = "grey",
limit = TRUE
)
plot_gene_relevance_rank(
coords,
exprs,
...,
genes,
dims = 1:2,
n_top = 10L,
pal = c("#3B99B1", "#F5191C"),
bins = 10L,
faceter = facet_wrap(~Gene)
)
## S4 method for signature 'matrix,matrix'
plot_gene_relevance_rank(
coords,
exprs,
...,
genes,
dims = 1:2,
n_top = 10L,
pal = c("#3B99B1", "#F5191C"),
bins = 10L,
faceter = facet_wrap(~Gene)
)
## S4 method for signature 'DiffusionMap,missing'
plot_gene_relevance_rank(
coords,
exprs,
...,
genes,
dims = 1:2,
n_top = 10L,
pal = c("#3B99B1", "#F5191C"),
bins = 10L,
faceter = facet_wrap(~Gene)
)
## S4 method for signature 'GeneRelevance,missing'
plot_gene_relevance_rank(
coords,
exprs,
...,
genes,
dims = 1:2,
n_top = 10L,
pal = c("#3B99B1", "#F5191C"),
bins = 10L,
faceter = facet_wrap(~Gene)
)
## S4 method for signature 'GeneRelevance,character'
plot(x, y, ...)
## S4 method for signature 'GeneRelevance,numeric'
plot(x, y, ...)
## S4 method for signature 'GeneRelevance,missing'
plot(x, y, ...)
coords |
A |
exprs |
An cells |
... |
Passed to |
genes |
Genes to base relevance map on (vector of strings). You can also pass an index into the gene names (vector of numbers or logicals with length > 1). The default NULL means all genes. |
dims |
Names or indices of dimensions to plot. When not plotting a |
pal |
Palette. Either A colormap function or a list of colors. |
faceter |
A ggplot faceter like |
iter_smooth |
Number of label smoothing iterations to perform on relevance map. The higher the more homogenous and the less local structure. |
n_top |
Number the top n genes per cell count towards the score defining which genes to return and plot in the relevance map. |
col_na |
Color for cells that end up with no most relevant gene. |
limit |
Limit the amount of displayed gene labels to the amount of available colors in |
bins |
Number of hexagonal bins for |
x |
|
y |
Gene name(s) or index/indices to create differential map for. (integer or character) |
ggplot2 plot, when plotting a relevance map with a list member $ids
containing the gene IDs used.
gene_relevance
, Gene Relevance methods
data(guo_norm)
dm <- DiffusionMap(guo_norm)
gr <- gene_relevance(dm)
plot(gr) # or plot_gene_relevance(dm)
plot(gr, 'Fgf4') # or plot_differential_map(dm, 'Fgf4')
guo_norm_mat <- t(Biobase::exprs(guo_norm))
pca <- prcomp(guo_norm_mat)$x
plot_gene_relevance(pca, guo_norm_mat, dims = 2:3)
plot_differential_map(pca, guo_norm_mat, genes = c('Fgf4', 'Nanog'))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.