#' @export
get_predictions.MixMod <- function(model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = insight::link_inverse(model),
model_info = NULL,
verbose = TRUE,
...) {
# does user want standard errors?
se <- !is.null(ci_level) && !is.na(ci_level)
# compute ci, two-ways
if (!is.null(ci_level) && !is.na(ci_level)) {
ci <- (1 + ci_level) / 2
} else {
ci <- 0.975
}
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
# copy object
predicted_data <- data_grid
if (!model_info$is_zero_inflated && type %in% c("zero_inflated", "zero_inflated_random", "zi_prob")) {
if (type == "zi_prob") {
insight::format_error("Model has no zero-inflation part.")
} else if (type == "zero_inflated") {
type <- "fixed"
} else {
type <- "random"
}
insight::format_alert(sprintf("Model has no zero-inflation part. Changing prediction-type to \"%s\".", type)) # nolint
}
if (model_info$is_zero_inflated && type %in% c("fixed", "random")) {
if (type == "fixed") {
type <- "zero_inflated"
} else {
type <- "zero_inflated_random"
}
insight::format_alert(sprintf("Model has zero-inflation part, predicted values can only be conditioned on zero-inflation part. Changing prediction-type to \"%s\".", type)) # nolint
}
if (type == "simulate") {
predicted_data <- .do_simulate(model, terms, ci, ...)
} else {
response_name <- insight::find_response(model)
if (is.null(condition) || !(response_name %in% names(condition))) {
insight::format_alert(sprintf(
"Results for MixMod-objects may vary depending on which value the response is conditioned on. Make sure to choose a sensible value for '%s' using the `condition` argument.", # nolint
response_name
))
}
prtype <- switch(type,
fe = ,
zero_inflated = "mean_subject",
re = ,
zero_inflated_random = "subject_specific",
zi_prob = "zero_part",
"mean_subject"
)
prdat <- stats::predict(
model,
newdata = data_grid,
type = prtype,
type_pred = "response",
se.fit = se,
level = ci_level,
...
)
if (!is.list(prdat)) {
prdat <- list(pred = prdat)
}
predicted_data$predicted <- prdat$pred
if (model_info$is_zero_inflated && prtype == "mean_subject") {
add.args <- match.call(expand.dots = FALSE)[["..."]]
if ("nsim" %in% names(add.args)) {
nsim <- eval(add.args[["nsim"]])
} else {
nsim <- 1000
}
model_frame <- insight::get_data(model, source = "frame", verbose = FALSE)
clean_terms <- .clean_terms(terms)
newdata <- .data_grid(
model = model,
model_frame = model_frame,
terms = terms,
typical = typical,
factor_adjustment = FALSE,
show_pretty_message = FALSE,
condition = condition
)
# Since the zero inflation and the conditional model are working in "opposite
# directions", confidence intervals can not be derived directly from the
# "predict()"-function. Thus, confidence intervals for type = "zero_inflated" are
# based on quantiles of simulated draws from a multivariate normal distribution
# (see also _Brooks et al. 2017, pp.391-392_ for details).
prdat.sim <- .simulate_zi_predictions(model, newdata, nsim, terms, typical, condition)
if (is.null(prdat.sim) || inherits(prdat.sim, c("error", "simpleError"))) {
insight::print_color("Error: Confidence intervals could not be computed.\n", "red")
if (inherits(prdat.sim, c("error", "simpleError"))) {
cat(sprintf("* Reason: %s\n", insight::safe_deparse(prdat.sim[[1]])))
cat(sprintf("* Source: %s\n", insight::safe_deparse(prdat.sim[[2]])))
}
predicted_data$conf.low <- NA
predicted_data$conf.high <- NA
} else {
# we need two data grids here: one for all combination of levels from the
# model predictors ("newdata"), and one with the current combinations only
# for the terms in question ("data_grid"). "sims" has always the same
# number of rows as "newdata", but "data_grid" might be shorter. So we
# merge "data_grid" and "newdata", add mean and quantiles from "sims"
# as new variables, and then later only keep the original observations
# from "data_grid" - by this, we avoid unequal row-lengths.
sims <- exp(prdat.sim$cond) * (1 - stats::plogis(prdat.sim$zi))
predicted_data <- .join_simulations(data_grid, newdata, prdat, sims, ci, clean_terms)
}
} else if (.obj_has_name(prdat, "upp")) {
predicted_data$conf.low <- prdat$low
predicted_data$conf.high <- prdat$upp
} else if (!is.null(prdat$se.fit)) {
if (type == "zi_prob") {
lf <- stats::qlogis
link_inverse <- stats::plogis
} else {
lf <- insight::link_function(model)
if (is.null(lf)) lf <- function(x) x
}
# if we have bias-correction, we must also adjust the predictions
# this has not been done before, since we return predictions on
# the response scale directly, without any adjustment
if (isTRUE(bias_correction)) {
data_grid$predicted <- link_inverse(lf(data_grid$predicted))
}
predicted_data$conf.low <- link_inverse(lf(predicted_data$predicted) - tcrit * prdat$se.fit)
predicted_data$conf.high <- link_inverse(lf(predicted_data$predicted) + tcrit * prdat$se.fit)
} else {
predicted_data$conf.low <- NA
predicted_data$conf.high <- NA
}
# copy standard errors
attr(predicted_data, "std.error") <- prdat$se.fit
}
attr(predicted_data, "prediction.interval") <- type %in% c("random", "zero_inflated_random", "simulate")
predicted_data
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.