simulate_predictions <- function(model, nsim, clean_terms, ci, type, interval = "confidence") {
fitfram <- .get_model_data(model)
fam <- insight::model_info(model)
if (fam$is_binomial || fam$is_multinomial || fam$is_ordinal || fam$is_categorical)
insight::format_error("Can't simulate predictions from models with binary, categorical or ordinal outcome. Please use another option for argument `type`.") # nolint
if (type == "simulate") {
sims <- suppressWarnings(tryCatch(
stats::simulate(model, nsim = nsim, re.form = NULL),
error = function(e) stats::simulate(model, nsim = nsim, re.form = NA)
))
} else {
sims <- stats::simulate(model, nsim = nsim, re.form = NA)
}
fitfram$predicted <- rowMeans(sims)
fitfram$conf.low <- apply(sims, 1, stats::quantile, probs = 1 - ci)
fitfram$conf.high <- apply(sims, 1, stats::quantile, probs = ci)
fitfram$std.error <- apply(sims, 1, stats::sd)
means_predicted <- .aggregate_simulations(fitfram$predicted, clean_terms, fitfram)
means_conf_low <- .aggregate_simulations(fitfram$conf.low, clean_terms, fitfram)
means_conf_high <- .aggregate_simulations(fitfram$conf.high, clean_terms, fitfram)
means_se <- .aggregate_simulations(fitfram$std.error, clean_terms, fitfram)
colnames(means_predicted) <- c(clean_terms, "predicted")
colnames(means_conf_low) <- c(clean_terms, "conf.low")
colnames(means_conf_high) <- c(clean_terms, "conf.high")
colnames(means_se) <- c(clean_terms, "std.error")
fitfram <- cbind(
means_predicted[clean_terms],
predicted = means_predicted$predicted,
conf.low = means_conf_low$conf.low,
conf.high = means_conf_high$conf.high,
std.error = means_se$std.error
)
rownames(fitfram) <- NULL
fitfram <- fitfram[stats::complete.cases(fitfram), , drop = FALSE]
if (length(clean_terms) == 1) {
fitfram <- fitfram[order(fitfram[[1]]), , drop = FALSE]
} else if (length(clean_terms) == 2) {
fitfram <- fitfram[order(fitfram[[1]], fitfram[[2]]), , drop = FALSE]
} else if (length(clean_terms) == 3) {
fitfram <- fitfram[order(fitfram[[1]], fitfram[[2]], fitfram[[3]]), , drop = FALSE]
} else if (length(clean_terms) == 4) {
fitfram <- fitfram[order(fitfram[[1]], fitfram[[2]], fitfram[[3]], fitfram[[4]]), , drop = FALSE]
}
fitfram
}
.do_simulate <- function(model, terms, ci, type = "simulate", interval = "confidence", ...) {
clean_terms <- .clean_terms(terms)
add.args <- match.call(expand.dots = FALSE)[["..."]]
if ("nsim" %in% names(add.args)) {
nsim <- eval(add.args[["nsim"]])
} else {
nsim <- 1000
}
simulate_predictions(model, nsim, clean_terms, ci, type, interval)
}
.aggregate_simulations <- function(sims, clean_terms, datagrid) {
stats::aggregate(
sims,
lapply(clean_terms, function(i) datagrid[[i]]),
mean,
na.rm = TRUE,
simplify = TRUE
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.