#' Get matrix from tibble
#'
#' @keywords internal
#' @noRd
#'
#'
#' @importFrom magrittr set_rownames
#' @importFrom rlang quo_is_null
#'
#' @param tbl A tibble
#' @param rownames The column name of the input tibble that will become the rownames of the output matrix
#' @param do_check A boolean
#'
#' @return A matrix
#'
#' @examples
#'
#'
#' tibble(.feature = "CD3G", count=1) |> as_matrix(rownames=.feature)
#'
as_data_frame <- function(tbl,
rownames = NULL,
do_check = TRUE) {
# Fix NOTEs
. = NULL
rownames = enquo(rownames)
tbl %>%
as.data.frame() |>
# Deal with rownames column if present
ifelse_pipe(
!quo_is_null(rownames),
~ .x |>
magrittr::set_rownames(tbl |> pull(!!rownames)) |>
select(-1)
)
}
my_stop = function() {
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance.
Please read the documentation of this function for more information.
")
}
#' This is a generalisation of ifelse that accepts an object and return an objects
#'
#' @keywords internal
#' @noRd
#'
#'
#'
#' @importFrom purrr as_mapper
#'
#' @param .x A tibble
#' @param .p A boolean
#' @param .f1 A function
#' @param .f2 A function
#'
#' @return A tibble
ifelse_pipe = function(.x, .p, .f1, .f2 = NULL) {
switch(.p %>% not() %>% sum(1),
as_mapper(.f1)(.x),
if (.f2 %>% is.null %>% not())
as_mapper(.f2)(.x)
else
.x)
}
#' This is a generalisation of ifelse that acceots an object and return an objects
#'
#' @keywords internal
#' @noRd
#'
#'
#'
#'
#' @param .x A tibble
#' @param .p1 A boolean
#' @param .p2 ELSE IF condition
#' @param .f1 A function
#' @param .f2 A function
#' @param .f3 A function
#'
#' @return A tibble
ifelse2_pipe = function(.x, .p1, .p2, .f1, .f2, .f3 = NULL) {
# Nested switch
switch(# First condition
.p1 %>% not() %>% sum(1),
# First outcome
as_mapper(.f1)(.x),
switch(
# Second condition
.p2 %>% not() %>% sum(1),
# Second outcome
as_mapper(.f2)(.x),
# Third outcome - if there is not .f3 just return the original data frame
if (.f3 %>% is.null %>% not())
as_mapper(.f3)(.x)
else
.x
))
}
#' Check whether a numeric vector has been log transformed
#'
#' @keywords internal
#' @noRd
#'
#' @param x A numeric vector
#' @param .abundance A character name of the transcript/gene abundance column
#'
#' @return NA
error_if_log_transformed <- function(x, .abundance) {
.abundance = enquo(.abundance)
if (x %>% nrow() %>% gt(0))
if (x %>% summarise(m = !!.abundance %>% max) %>% pull(m) < 50)
stop(
"tidybulk says: The input was log transformed, this algorithm requires raw (un-scaled) read counts"
)
}
#' Check whether there are duplicated genes/transcripts
#'
#' @keywords internal
#' @noRd
#'
#'
#'
#' @import tibble
#' @importFrom utils capture.output
#'
#'
#' @param .data A tibble of read counts
#' @param .sample A character name of the sample column
#' @param .transcript A character name of the transcript/gene column
#' @param .abundance A character name of the read count column
#'
#' @return A tbl
error_if_duplicated_genes <- function(.data,
.sample = `sample`,
.transcript = `transcript`,
.abundance = `read count`) {
.sample = enquo(.sample)
.transcript = enquo(.transcript)
.abundance = enquo(.abundance)
duplicates <-
distinct( .data, !!.sample,!!.transcript,!!.abundance) %>%
count(!!.sample,!!.transcript) %>%
filter(n > 1) %>%
arrange(n %>% desc())
if (duplicates %>% nrow() > 0) {
message("Those are the duplicated genes")
duplicates %>% capture.output() %>% paste0(collapse = "\n") %>% message()
stop(
"tidybulk says: Your dataset include duplicated sample/gene pairs. Please, remove redundancies before proceeding."
)
}
.data
}
#' Check whether there are NA counts
#'
#' @keywords internal
#' @noRd
#'
#'
#'
#' @import tibble
#'
#' @param .data A tibble of read counts
#' @param .abundance A character name of the read count column
#'
#' @return A tbl
#'
error_if_counts_is_na = function(.data, .abundance) {
.abundance = enquo(.abundance)
# Do the check
if (.data %>% filter(!!.abundance %>% is.na) %>% nrow() %>% gt(0))
stop("tidybulk says: You have NA values in your counts")
# If all good return original data frame
.data
}
#' Check whether there are NA counts
#'
#' @keywords internal
#' @noRd
#'
#'
#'
#' @import tibble
#' @importFrom purrr map
#'
#'
#' @param .data A tibble of read counts
#' @param list_input A list
#' @param expected_type A character string
#'
#' @return A tbl
#'
error_if_wrong_input = function(.data, list_input, expected_type) {
# Do the check
if (
list_input %>%
map(~ .x %>% class() %>% `[` (1)) %>%
unlist %>%
equals(expected_type) %>%
not()
)
stop("tidybulk says: You have passed the wrong argument to the function. Please check again.")
# If all good return original data frame
.data
}
#' .formula parser
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom stats terms
#'
#' @param fm a formula
#' @return A character vector
#'
#'
parse_formula <- function(fm) {
if (attr(terms(fm), "response") == 1)
stop("tidybulk says: The .formula must be of the kind \"~ covariates\" ")
else
as.character(attr(terms(fm), "variables"))[-1]
}
#' Formula parser with survival
#'
#' @keywords internal
#' @noRd
#'
#' @param fm A formula
#'
#' @return A character vector
#'
#'
parse_formula_survival <- function(fm) {
pars = as.character(attr(terms(fm), "variables"))[-1]
response = NULL
if(attr(terms(fm), "response") == 1) response = pars[1]
covariates = ifelse(attr(terms(fm), "response") == 1, pars[-1], pars)
list(
response = response,
covariates = covariates
)
}
#' Scale design matrix
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom stats setNames
#' @importFrom stats cov
#'
#' @param df A tibble
#' @param .formula a formula
#'
#' @return A tibble
#'
#'
scale_design = function(df, .formula) {
df %>%
setNames(c("sample_idx", "(Intercept)", parse_formula(.formula))) %>%
gather(cov, value,-sample_idx) %>%
group_by(cov) %>%
mutate(value = ifelse(
!grepl("Intercept", cov) &
length(union(c(0, 1), value)) != 2,
scale(value),
value
)) %>%
ungroup() %>%
spread(cov, value) %>%
arrange(as.integer(sample_idx)) %>%
select(`(Intercept)`, any_of(parse_formula(.formula)))
}
get_tt_columns = function(.data){
if(
.data %>% attr("internals") %>% is.list() &&
"tt_columns" %in% names(.data %>% attr("internals"))
) #& "internals" %in% (.data %>% attr("internals") %>% names()))
.data %>% attr("internals") %$% tt_columns
else NULL
}
#' @importFrom rlang quo_is_symbol
#'
add_tt_columns = function(.data,
.sample,
.transcript,
.abundance,
.abundance_scaled = NULL,
.abundance_adjusted = NULL){
# Make col names
.sample = enquo(.sample)
.transcript = enquo(.transcript)
.abundance = enquo(.abundance)
.abundance_scaled = enquo(.abundance_scaled)
.abundance_adjusted = enquo(.abundance_adjusted)
# Add tt_columns
.data %>% attach_to_internals(
list(
.sample = .sample,
.transcript = .transcript,
.abundance = .abundance
) %>%
# If .abundance_scaled is not NULL add it to tt_columns
ifelse_pipe(
.abundance_scaled %>% quo_is_symbol,
~ .x %>% c( list(.abundance_scaled = .abundance_scaled))
) %>%
ifelse_pipe(
.abundance_adjusted %>% quo_is_symbol,
~ .x %>% c( list(.abundance_adjusted = .abundance_adjusted))
),
"tt_columns"
)
}
initialise_tt_internals = function(.data){
.data %>%
ifelse_pipe(
"internals" %in% ((.) %>% attributes %>% names) %>% not(),
~ .x %>% add_attr(list(), "internals")
)
}
reattach_internals = function(.data, .data_internals_from = NULL){
if(.data_internals_from %>% is.null)
.data_internals_from = .data
.data %>% add_attr(.data_internals_from %>% attr("internals"), "internals")
}
attach_to_internals = function(.data, .object, .name){
internals =
.data %>%
initialise_tt_internals() %>%
attr("internals")
# Add tt_bolumns
internals[[.name]] = .object
.data %>% add_attr(internals, "internals")
}
drop_internals = function(.data){
.data %>% drop_attr("internals")
}
memorise_methods_used = function(.data, .method, object_containing_methods = .data){
# object_containing_methods is used in case for example of test gene rank where the output is a tibble that has lost its attributes
.data %>%
attach_to_internals(
object_containing_methods %>%
attr("internals") %>%
.[["methods_used"]] %>%
c(.method) %>% unique(),
"methods_used"
)
}
#' Add attribute to abject
#'
#' @keywords internal
#' @noRd
#'
#'
#' @param var A tibble
#' @param attribute An object
#' @param name A character name of the attribute
#'
#' @return A tibble with an additional attribute
add_attr = function(var, attribute, name) {
attr(var, name) <- attribute
var
}
#' Drop attribute to abject
#'
#' @keywords internal
#' @noRd
#'
#'
#' @param var A tibble
#' @param name A character name of the attribute
#'
#' @return A tibble with an additional attribute
drop_attr = function(var, name) {
attr(var, name) <- NULL
var
}
#' Remove class to abject
#'
#' @keywords internal
#' @noRd
#'
#'
#' @param var A tibble
#' @param name A character name of the class
#'
#' @return A tibble with an additional attribute
drop_class = function(var, name) {
class(var) <- class(var)[!class(var)%in%name]
var
}
#' From rlang deprecated
#'
#' @keywords internal
#' @noRd
#'
#' @param x An array
#' @param values An array
#' @param before A boolean
#'
#' @return An array
#'
prepend = function (x, values, before = 1)
{
n <- length(x)
stopifnot(before > 0 && before <= n)
if (before == 1) {
c(values, x)
}
else {
c(x[1:(before - 1)], values, x[before:n])
}
}
#' Add class to abject
#'
#' @keywords internal
#' @noRd
#'
#' @param var A tibble
#' @param name A character name of the attribute
#'
#' @return A tibble with an additional attribute
add_class = function(var, name) {
if(!name %in% class(var)) class(var) <- prepend(class(var),name)
var
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#' @importFrom rlang quo_is_symbolic
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#' @param .transcript A character name of the transcript/gene column
#' @param .abundance A character name of the read count column
#'
#' @return A list of column enquo or error
get_sample_transcript_counts = function(.data, .sample, .transcript, .abundance){
if( quo_is_symbolic(.sample) ) .sample = .sample
else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
.sample = get_tt_columns(.data)$.sample
else my_stop()
if( quo_is_symbolic(.transcript) ) .transcript = .transcript
else if(".transcript" %in% (.data %>% get_tt_columns() %>% names))
.transcript = get_tt_columns(.data)$.transcript
else my_stop()
if( quo_is_symbolic(.abundance) ) .abundance = .abundance
else if(".abundance" %in% (.data %>% get_tt_columns() %>% names))
.abundance = get_tt_columns(.data)$.abundance
else my_stop()
list(.sample = .sample, .transcript = .transcript, .abundance = .abundance)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#' @param .abundance A character name of the read count column
#'
#' @return A list of column enquo or error
get_sample_counts = function(.data, .sample, .abundance){
if( .sample %>% quo_is_symbol() ) .sample = .sample
else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
.sample = get_tt_columns(.data)$.sample
else my_stop()
if( .abundance %>% quo_is_symbol() ) .abundance = .abundance
else if(".abundance" %in% (.data %>% get_tt_columns() %>% names))
.abundance = get_tt_columns(.data)$.abundance
else my_stop()
list(.sample = .sample, .abundance = .abundance)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#'
#' @return A list of column enquo or error
get_sample = function(.data, .sample){
if( .sample %>% quo_is_symbol() ) .sample = .sample
else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
.sample = get_tt_columns(.data)$.sample
else my_stop()
list(.sample = .sample)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .transcript A character name of the transcript column
#'
#' @return A list of column enquo or error
get_transcript = function(.data, .transcript){
my_stop = function() {
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance.
Please read the documentation of this function for more information.
")
}
if( .transcript %>% quo_is_symbol() ) .transcript = .transcript
else if(".transcript" %in% (.data %>% get_tt_columns() %>% names))
.transcript = get_tt_columns(.data)$.transcript
else my_stop()
list(.transcript = .transcript)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#' @param .transcript A character name of the transcript/gene column
#'
#' @return A list of column enquo or error
get_sample_transcript = function(.data, .sample, .transcript){
if( .sample %>% quo_is_symbol() ) .sample = .sample
else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
.sample = get_tt_columns(.data)$.sample
else my_stop()
if( .transcript %>% quo_is_symbol() ) .transcript = .transcript
else if(".transcript" %in% (.data %>% get_tt_columns() %>% names))
.transcript = get_tt_columns(.data)$.transcript
else my_stop()
list(.sample = .sample, .transcript = .transcript)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#'
#' @return A list of column enquo or error
get_sample = function(.data, .sample){
if( .sample %>% quo_is_symbol() ) .sample = .sample
else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
.sample = get_tt_columns(.data)$.sample
else my_stop()
list(.sample = .sample)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .element A character name of the sample column
#' @param .feature A character name of the transcript/gene column
#' @param of_samples A boolean
#'
#' @return A list of column enquo or error
#'
get_elements_features = function(.data, .element, .feature, of_samples = TRUE){
# If setted by the user, enquo those
if(
.element %>% quo_is_symbol() &
.feature %>% quo_is_symbol()
)
return(list(
.element = .element,
.feature = .feature
))
# Otherwise check if attribute exists
else {
# If so, take them from the attribute
if(.data %>% get_tt_columns() %>% is.null %>% not())
return(list(
.element = switch(
of_samples %>% not() %>% sum(1),
get_tt_columns(.data)$.sample,
get_tt_columns(.data)$.transcript
),
.feature = switch(
of_samples %>% not() %>% sum(1),
get_tt_columns(.data)$.transcript,
get_tt_columns(.data)$.sample
)
))
# Else through error
else
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance
Please read the documentation of this function for more information.
")
}
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .element A character name of the sample column
#' @param .feature A character name of the transcript/gene column
#' @param .abundance A character name of the read count column
#' @param of_samples A boolean
#'
#' @return A list of column enquo or error
#'
get_elements_features_abundance = function(.data, .element, .feature, .abundance, of_samples = TRUE){
my_stop = function() {
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance
Please read the documentation of this function for more information.
")
}
if( .element %>% quo_is_symbol() ) .element = .element
else if(of_samples & ".sample" %in% (.data %>% get_tt_columns() %>% names))
.element = get_tt_columns(.data)$.sample
else if((!of_samples) & ".transcript" %in% (.data %>% get_tt_columns() %>% names))
.element = get_tt_columns(.data)$.transcript
else my_stop()
if( .feature %>% quo_is_symbol() ) .feature = .feature
else if(of_samples & ".transcript" %in% (.data %>% get_tt_columns() %>% names))
.feature = get_tt_columns(.data)$.transcript
else if((!of_samples) & ".sample" %in% (.data %>% get_tt_columns() %>% names))
.feature = get_tt_columns(.data)$.sample
else my_stop()
if( .abundance %>% quo_is_symbol() ) .abundance = .abundance
else if(".abundance" %in% (.data %>% get_tt_columns() %>% names))
.abundance = get_tt_columns(.data)$.abundance
else my_stop()
list(.element = .element, .feature = .feature, .abundance = .abundance)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .element A character name of the sample column
#' @param of_samples A boolean
#'
#' @return A list of column enquo or error
get_elements = function(.data, .element, of_samples = TRUE){
# If setted by the user, enquo those
if(
.element %>% quo_is_symbol()
)
return(list(
.element = .element
))
# Otherwise check if attribute exists
else {
# If so, take them from the attribute
if(.data %>% get_tt_columns() %>% is.null %>% not())
return(list(
.element = switch(
of_samples %>% not() %>% sum(1),
get_tt_columns(.data)$.sample,
get_tt_columns(.data)$.transcript
)
))
# Else through error
else
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance.
Please read the documentation of this function for more information.
")
}
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .abundance A character name of the abundance column
#'
#' @return A list of column enquo or error
get_abundance_norm_if_exists = function(.data, .abundance){
# If setted by the user, enquo those
if(
.abundance %>% quo_is_symbol()
)
return(list(
.abundance = .abundance
))
# Otherwise check if attribute exists
else {
# If so, take them from the attribute
if(.data %>% get_tt_columns() %>% is.null %>% not())
return(list(
.abundance = switch(
(".abundance_scaled" %in% (.data %>% get_tt_columns() %>% names) &&
# .data %>% get_tt_columns() %$% .abundance_scaled %>% is.null %>% not() &&
quo_name(.data %>% get_tt_columns() %$% .abundance_scaled) %in% (.data %>% colnames)
) %>% not() %>% sum(1),
get_tt_columns(.data)$.abundance_scaled,
get_tt_columns(.data)$.abundance
)
))
# Else through error
else
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance.
Please read the documentation of this function for more information.
")
}
}
#' Sub function of remove_redundancy_elements_though_reduced_dimensions
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom stats dist
#' @importFrom utils head
#'
#' @param df A tibble
#'
#'
#' @return A tibble with pairs to drop
select_closest_pairs = function(df) {
couples <- df %>% head(n = 0)
while (df %>% nrow() > 0) {
pair <- df %>%
arrange(dist) %>%
head(n = 1)
couples <- couples %>% bind_rows(pair)
df <- df %>%
filter(
!`sample 1` %in% (pair %>% select(1:2) %>% as.character()) &
!`sample 2` %in% (pair %>% select(1:2) %>% as.character())
)
}
couples
}
#' This function is needed for DE in case the matrix is not rectangular, but includes NA
#'
#' @keywords internal
#' @noRd
#'
#' @param .matrix A matrix
#'
#' @return A matrix
fill_NA_with_row_median = function(.matrix){
if(length(which(rowSums(is.na(.matrix)) > 0)) > 0)
rbind(
.matrix[rowSums(is.na(.matrix)) == 0,],
apply(.matrix[rowSums(is.na(.matrix)) > 0,], 1, FUN = function(.x) { .x[is.na(.x)] = median(.x, na.rm = TRUE); .x}) %>% t
)
else
.matrix
}
#' get_x_y_annotation_columns
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom magrittr equals
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment))
#' @param .horizontal The name of the column horizontally presented in the heatmap
#' @param .vertical The name of the column vertically presented in the heatmap
#' @param .abundance The name of the transcript/gene abundance column
#' @param .abundance_scaled The name of the transcript/gene scaled abundance column
#'
#' @description This function recognise what are the sample-wise columns and transcrip-wise columns
#'
#' @return A list
#'
get_x_y_annotation_columns = function(.data, .horizontal, .vertical, .abundance, .abundance_scaled){
# Comply with CRAN NOTES
. = NULL
# Make col names
.horizontal = enquo(.horizontal)
.vertical = enquo(.vertical)
.abundance = enquo(.abundance)
.abundance_scaled = enquo(.abundance_scaled)
# x-annotation df
n_x = .data %>% select(!!.horizontal) |> distinct() |> nrow()
n_y = .data %>% select(!!.vertical) |> distinct() |> nrow()
# Sample wise columns
horizontal_cols=
.data %>%
select(-!!.horizontal, -!!.vertical, -!!.abundance) %>%
colnames %>%
map(
~
.x %>%
when(
.data %>%
select(!!.horizontal, !!as.symbol(.x)) %>%
distinct() |>
nrow() %>%
equals(n_x) ~ .x,
~ NULL
)
) %>%
# Drop NULL
{ (.)[lengths((.)) != 0] } %>%
unlist
# Transcript wise columns
vertical_cols=
.data %>%
select(-!!.horizontal, -!!.vertical, -!!.abundance, -horizontal_cols) %>%
colnames %>%
map(
~
.x %>%
ifelse_pipe(
.data %>%
select(!!.vertical, !!as.symbol(.x)) |>
distinct() |>
nrow() %>%
equals(n_y),
~ .x,
~ NULL
)
) %>%
# Drop NULL
{ (.)[lengths((.)) != 0] } %>%
unlist
# Counts wise columns, at the moment scaled counts is treated as special and not accounted for here
counts_cols =
.data %>%
select(-!!.horizontal, -!!.vertical, -!!.abundance) %>%
# Exclude horizontal
ifelse_pipe(!is.null(horizontal_cols), ~ .x %>% select(-horizontal_cols)) %>%
# Exclude vertical
ifelse_pipe(!is.null(vertical_cols), ~ .x %>% select(-vertical_cols)) %>%
# Exclude scaled counts if exist
ifelse_pipe(.abundance_scaled %>% quo_is_symbol, ~ .x %>% select(-!!.abundance_scaled) ) %>%
# Select colnames
colnames %>%
# select columns
map(
~
.x %>%
ifelse_pipe(
.data %>%
select(!!.vertical, !!.horizontal, !!as.symbol(.x)) %>%
distinct() |>
nrow() %>%
equals(n_x * n_y),
~ .x,
~ NULL
)
) %>%
# Drop NULL
{ (.)[lengths((.)) != 0] } %>%
unlist
list( horizontal_cols = horizontal_cols, vertical_cols = vertical_cols, counts_cols = counts_cols )
}
get_specific_annotation_columns = function(.data, .col){
# Comply with CRAN NOTES
. = NULL
# Make col names
.col = enquo(.col)
# x-annotation df
n_x = .data %>% distinct(!!.col) %>% nrow
# Sample wise columns
.data %>%
select(-!!.col) %>%
colnames %>%
map(
~
.x %>%
ifelse_pipe(
.data %>%
distinct(!!.col, !!as.symbol(.x)) %>%
nrow() %>%
equals(n_x),
~ .x,
~ NULL
)
) %>%
# Drop NULL
{ (.)[lengths((.)) != 0] } %>%
unlist
}
#' Convert array of quosure (e.g. c(col_a, col_b)) into character vector
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_name
#' @importFrom rlang quo_squash
#'
#' @param v A array of quosures (e.g. c(col_a, col_b))
#'
#' @return A character vector
quo_names <- function(v) {
v = quo_name(quo_squash(v))
gsub('^c\\(|`|\\)$', '', v) %>%
strsplit(', ') %>%
unlist
}
# Greater than
gt = function(a, b){ a > b }
# Smaller than
st = function(a, b){ a < b }
# Negation
not = function(is){ !is }
# Raise to the power
pow = function(a,b){ a^b }
outersect <- function(x, y) {
sort(c(setdiff(x, y),
setdiff(y, x)))
}
do_validate = function(){
if(!"tidybulk_do_validate" %in% names(options())) TRUE
else getOption("tidybulk_do_validate")
}
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom stringr str_remove
#' @importFrom stringr str_replace_all
#'
multivariable_differential_tissue_composition = function(
deconvoluted,
method,
.my_formula,
min_detected_proportion
){
results_regression =
deconvoluted %>%
# Replace 0s - before
mutate(across(starts_with(method), function(.x) if_else(.x==0, min_detected_proportion, .x))) %>%
mutate(across(starts_with(method), boot::logit)) %>%
# Rename columns - after
setNames(
str_remove(colnames(.), sprintf("%s:", method)) %>%
str_replace_all("[ \\(\\)]", "___")
) %>%
# Beta or Cox
when(
grepl("Surv", .my_formula) %>% any ~ {
# Check if package is installed, otherwise install
check_and_install_packages(c("survival", "boot"))
(.) %>%
survival::coxph(.my_formula, .) %>%
broom::tidy()
} ,
~ {
(.) %>%
lm(.my_formula, .) %>%
broom::tidy() %>%
filter(term != "(Intercept)")
}
)
# Join results
deconvoluted %>%
pivot_longer(
names_prefix = sprintf("%s: ", method),
cols = starts_with(method),
names_to = ".cell_type",
values_to = ".proportion"
) %>%
tidyr::nest(cell_type_proportions = -.cell_type) %>%
bind_cols(
results_regression %>%
select(-term)
)
}
univariable_differential_tissue_composition = function(
deconvoluted,
method,
.my_formula,
min_detected_proportion
){
deconvoluted %>%
# Test
pivot_longer(
names_prefix = sprintf("%s: ", method),
cols = starts_with(method),
names_to = ".cell_type",
values_to = ".proportion"
) %>%
# Replace 0s
mutate(.proportion_0_corrected = if_else(.proportion==0, min_detected_proportion, .proportion)) %>%
# Test survival
tidyr::nest(cell_type_proportions = -.cell_type) %>%
mutate(surv_test = map(
cell_type_proportions,
~ {
if(pull(., .proportion_0_corrected) %>% unique %>% length %>% `<=` (3)) return(NULL)
# See if regression if censored or not
.x %>%
when(
grepl("Surv", .my_formula) %>% any ~ {
# Check if package is installed, otherwise install
check_and_install_packages(c("survival", "boot"))
(.) %>%
mutate(.proportion_0_corrected = .proportion_0_corrected %>% boot::logit()) %>%
survival::coxph(.my_formula, .) %>%
broom::tidy() %>%
select(-term)
} ,
~ {
# Check if package is installed, otherwise install
check_and_install_packages("betareg")
(.) %>%
betareg::betareg(.my_formula, .) %>%
broom::tidy() %>%
filter(component != "precision") %>%
pivot_wider(names_from = term, values_from = c(estimate, std.error, statistic, p.value)) %>%
select(-c(`std.error_(Intercept)`, `statistic_(Intercept)`, `p.value_(Intercept)`)) %>%
select(-component)
}
)
}
)) %>%
unnest(surv_test, keep_empty = TRUE)
}
univariable_differential_tissue_stratification = function(
deconvoluted,
method,
.my_formula
){
# Check if package is installed, otherwise install
check_and_install_packages(c("survival", "survminer"))
check_and_install_packages("broom")
deconvoluted %>%
# Test
pivot_longer(
names_prefix = sprintf("%s: ", method),
cols = starts_with(method),
names_to = ".cell_type",
values_to = ".proportion"
) %>%
# Test survival
tidyr::nest(cell_type_proportions = -.cell_type) %>%
mutate(surv_test = map(
cell_type_proportions,
~ {
data = .x %>%
mutate(.high_cellularity = .proportion > median(.proportion))
if(data %>%
distinct(.high_cellularity) %>%
nrow() %>%
equals(1)
) return(NULL)
# See if regression if censored or not
fit = survival::survdiff(data = data, .my_formula)
p =
survminer::surv_fit(data = data, .my_formula) %>%
survminer::ggsurvplot(
fit=.,
data = data,
risk.table = FALSE,
conf.int = TRUE,
palette = c("#ed6f68", "#5366A0" ),
legend = "none",
pval = TRUE
)
fit %>%
broom::tidy() %>%
select(-N, -obs) %>%
spread(.high_cellularity, exp) %>%
setNames(c(".low_cellularity_expected", ".high_cellularity_expected")) %>%
mutate(pvalue = 1 - pchisq(fit$chisq, length(fit$n) - 1)) %>%
mutate(plot = list(p))
}
)) %>%
unnest(surv_test, keep_empty = TRUE)
}
univariable_differential_tissue_stratification_SE = function(
deconvoluted,
method,
.my_formula
){
# Check if package is installed, otherwise install
check_and_install_packages(c("survival", "survminer", "broom"))
deconvoluted %>%
pivot_sample() %>%
# Test
pivot_longer(
names_prefix = sprintf("%s: ", method),
cols = starts_with(method),
names_to = ".cell_type",
values_to = ".proportion"
) %>%
# Test survival
tidyr::nest(cell_type_proportions = -.cell_type) %>%
mutate(surv_test = map(
cell_type_proportions,
~ {
data = .x %>%
mutate(.high_cellularity = .proportion > median(.proportion))
if(data %>%
distinct(.high_cellularity) %>%
nrow() %>%
equals(1)
) return(NULL)
# See if regression if censored or not
fit = survival::survdiff(data = data, .my_formula)
p =
survminer::surv_fit(data = data, .my_formula) %>%
survminer::ggsurvplot(
fit=.,
data = data,
risk.table = FALSE,
conf.int = TRUE,
palette = c("#ed6f68", "#5366A0" ),
legend = "none",
pval = TRUE
)
fit %>%
broom::tidy() %>%
select(-N, -obs) %>%
spread(.high_cellularity, exp) %>%
setNames(c(".low_cellularity_expected", ".high_cellularity_expected")) %>%
mutate(pvalue = 1 - pchisq(fit$chisq, length(fit$n) - 1)) %>%
mutate(plot = list(p))
}
)) %>%
unnest(surv_test, keep_empty = TRUE)
}
# Function that rotates a 2D space of a arbitrary angle
rotation = function(m, d) {
r = d * pi / 180
((bind_rows(
c(`1` = cos(r), `2` = -sin(r)),
c(`1` = sin(r), `2` = cos(r))
) %>% as_matrix) %*% m)
}
combineByRow <- function(m, fun = NULL) {
# Shown here
#https://stackoverflow.com/questions/8139301/aggregate-rows-in-a-large-matrix-by-rowname
m <- m[ order(rownames(m)), ,drop=FALSE]
## keep track of previous row name
prev <- rownames(m)[1]
i.start <- 1
i.end <- 1
## cache the rownames -- profiling shows that it takes
## forever to look at them
m.rownames <- rownames(m)
stopifnot(all(!is.na(m.rownames)))
## go through matrix in a loop, as we need to combine some unknown
## set of rows
for (i in 2:(1+nrow(m))) {
curr <- m.rownames[i]
## if we found a new row name (or are at the end of the matrix),
## combine all rows and mark invalid rows
if (prev != curr || is.na(curr)) {
if (i.start < i.end) {
m[i.start,] <- apply(m[i.start:i.end,,drop=FALSE], 2, fun)
m.rownames[(1+i.start):i.end] <- NA
}
prev <- curr
i.start <- i
} else {
i.end <- i
}
}
m[ which(!is.na(m.rownames)),,drop=FALSE]
}
filter_genes_on_condition = function(.data, .subset_for_scaling){
.subset_for_scaling = enquo(.subset_for_scaling)
# Get genes from condition
my_genes =
rowData(.data) %>%
as_tibble(rownames=".feature") %>%
filter(!!.subset_for_scaling) %>%
pull(.feature)
.data[rownames(.data) %in% my_genes,]
}
which_NA_matrix = function(.data){
is_na <- which(is.na(.data), arr.ind=TRUE)
which_is_NA = fill_matrix_with_FALSE(.data )
which_is_NA[is_na] <- TRUE
which_is_NA
}
fill_matrix_with_FALSE = function(.data){
.data[,] = FALSE
.data
}
rowMedians = function(.data, na.rm){
apply(.data, 1, median, na.rm=na.rm)
}
fill_NA_matrix_with_factor_colwise = function(.data, factor){
rn = rownames(.data)
cn = colnames(.data)
.data %>%
t %>%
split.data.frame(factor) %>%
map(~ t(.x)) %>%
# Fill
map(
~ {
k <- which(is.na(.x), arr.ind=TRUE)
.x[k] <- rowMedians(.x, na.rm=TRUE)[k[,1]]
.x
}
) %>%
# Add NA factors if any
when(
is.na(factor) %>% length() %>% gt(0) ~ (.) %>% c(list(.data[,is.na(factor)])),
~ (.)
) %>%
# Merge
reduce(cbind) %>%
# Reorder rows and column as it was
.[rn, cn]
}
select_non_standard_column_class = function(.x){
!is.numeric(.x) & !is.character(.x) & !is.factor(.x) & !is.logical(.x)
}
get_special_column_name_symbol = function(name){
list(name = name, symbol = as.symbol(name))
}
feature__ = get_special_column_name_symbol(".feature")
sample__ = get_special_column_name_symbol(".sample")
check_and_install_packages <- function(packages) {
# Separate GitHub packages from CRAN/Bioconductor packages
github_packages <- packages[grepl("/", packages)]
regular_packages <- packages[!grepl("/", packages)]
# Check if regular packages are installed
missing_regular_packages <- regular_packages[!sapply(regular_packages, requireNamespace, quietly = TRUE)]
# Check if GitHub packages are installed
missing_github_packages <- github_packages[!sapply(gsub(".*/", "", github_packages), requireNamespace, quietly = TRUE)]
# Combine all missing packages
missing_packages <- c(missing_regular_packages, missing_github_packages)
# If any packages are missing, print installation instructions
if (length(missing_packages) > 0) {
stop(
"tidybulk says: The following packages are required:\n",
paste(" -", missing_packages, collapse = "\n"), "\n",
"Please install them by running:\n",
" if (!requireNamespace('BiocManager', quietly = TRUE))\n",
" install.packages('BiocManager', repos = 'https://cloud.r-project.org')\n",
paste0(
" BiocManager::install(c(",
paste0("'", missing_packages, "'", collapse = ", "),
"), ask = FALSE)"
)
)
}
}
#' Drop Environment from a Quosure
#'
#' Takes a quosure and resets its environment to `emptyenv()` without altering
#' its expression.
#'
#' @param q A quosure object to have its environment stripped.
#' @return A quosure with the same expression but environment set to `emptyenv()`.
#'
#' @importFrom rlang is_quosure
#' @importFrom rlang quo_set_env
#'
#' @examples
#' library(rlang)
#'
#' q <- quo(x + y)
#' environment(q)
#'
#' q_stripped <- drop_enquo_env(q)
#' identical(quo_get_env(q_stripped), emptyenv()) # TRUE
#'
#' @noRd
drop_enquo_env <- function(q) {
if (!rlang::is_quosure(q)) {
stop("`q` must be a quosure.")
}
rlang::quo_set_env(q, emptyenv())
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.