R/utilities.R

Defines functions scale_design parse_formula_survival parse_formula error_if_wrong_input error_if_counts_is_na error_if_duplicated_genes error_if_log_transformed ifelse2_pipe ifelse_pipe my_stop as_data_frame

#' Get matrix from tibble
#'
#' @keywords internal
#' @noRd
#' 
#' 
#' @importFrom magrittr set_rownames
#' @importFrom rlang quo_is_null
#'
#' @param tbl A tibble
#' @param rownames The column name of the input tibble that will become the rownames of the output matrix
#' @param do_check A boolean
#'
#' @return A matrix
#'
#' @examples
#'
#'
#' tibble(.feature = "CD3G", count=1) |> as_matrix(rownames=.feature)
#'
as_data_frame <- function(tbl,
                          rownames = NULL,
                          do_check = TRUE) {
  
  # Fix NOTEs
  . = NULL
  
  rownames = enquo(rownames)
  tbl %>%
    
    as.data.frame() |>
    
    # Deal with rownames column if present
    ifelse_pipe(
      !quo_is_null(rownames),
      ~ .x |>
        magrittr::set_rownames(tbl |> pull(!!rownames)) |>
        select(-1)
    ) 
}

my_stop = function() {
  stop("
        tidybulk says: The function does not know what your sample, transcript and counts columns are.
	You might need to specify the arguments .sample, .transcript and/or .abundance. 
	Please read the documentation of this function for more information.
      ")
}

#' This is a generalisation of ifelse that accepts an object and return an objects
#'
#' @keywords internal
#' @noRd
#'
#' 
#' 
#' @importFrom purrr as_mapper
#'
#' @param .x A tibble
#' @param .p A boolean
#' @param .f1 A function
#' @param .f2 A function
#'
#' @return A tibble
ifelse_pipe = function(.x, .p, .f1, .f2 = NULL) {
  switch(.p %>% not() %>% sum(1),
         as_mapper(.f1)(.x),
         if (.f2 %>% is.null %>% not())
           as_mapper(.f2)(.x)
         else
           .x)

}

#' This is a generalisation of ifelse that acceots an object and return an objects
#'
#' @keywords internal
#' @noRd
#'
#' 
#' 
#'
#' @param .x A tibble
#' @param .p1 A boolean
#' @param .p2 ELSE IF condition
#' @param .f1 A function
#' @param .f2 A function
#' @param .f3 A function
#'
#' @return A tibble
ifelse2_pipe = function(.x, .p1, .p2, .f1, .f2, .f3 = NULL) {
  # Nested switch
  switch(# First condition
    .p1 %>% not() %>% sum(1),

    # First outcome
    as_mapper(.f1)(.x),
    switch(
      # Second condition
      .p2 %>% not() %>% sum(1),

      # Second outcome
      as_mapper(.f2)(.x),

      # Third outcome - if there is not .f3 just return the original data frame
      if (.f3 %>% is.null %>% not())
        as_mapper(.f3)(.x)
      else
        .x
    ))
}



#' Check whether a numeric vector has been log transformed
#'
#' @keywords internal
#' @noRd
#'
#' @param x A numeric vector
#' @param .abundance A character name of the transcript/gene abundance column
#'
#' @return NA
error_if_log_transformed <- function(x, .abundance) {
  .abundance = enquo(.abundance)

  if (x %>% nrow() %>% gt(0))
    if (x %>% summarise(m = !!.abundance %>% max) %>% pull(m) < 50)
      stop(
        "tidybulk says: The input was log transformed, this algorithm requires raw (un-scaled) read counts"
      )
}

#' Check whether there are duplicated genes/transcripts
#'
#' @keywords internal
#' @noRd
#'
#' 
#' 
#' @import tibble
#' @importFrom utils capture.output
#'
#'
#' @param .data A tibble of read counts
#' @param .sample A character name of the sample column
#' @param .transcript A character name of the transcript/gene column
#' @param .abundance A character name of the read count column
#'
#' @return A tbl
error_if_duplicated_genes <- function(.data,
                                      .sample = `sample`,
                                      .transcript = `transcript`,
                                      .abundance = `read count`) {
  .sample = enquo(.sample)
  .transcript = enquo(.transcript)
  .abundance = enquo(.abundance)

  duplicates <-
    distinct( .data, !!.sample,!!.transcript,!!.abundance) %>%
    count(!!.sample,!!.transcript) %>%
    filter(n > 1) %>%
    arrange(n %>% desc())

  if (duplicates %>% nrow() > 0) {
    message("Those are the duplicated genes")
    duplicates %>% capture.output() %>% paste0(collapse = "\n") %>% message()
    stop(
      "tidybulk says: Your dataset include duplicated sample/gene pairs. Please, remove redundancies before proceeding."
    )
  }

  .data

}

#' Check whether there are NA counts
#'
#' @keywords internal
#' @noRd
#'
#' 
#' 
#' @import tibble
#'
#' @param .data A tibble of read counts
#' @param .abundance A character name of the read count column
#'
#' @return A tbl
#'
error_if_counts_is_na = function(.data, .abundance) {
  .abundance = enquo(.abundance)

  # Do the check
  if (.data %>% filter(!!.abundance %>% is.na) %>% nrow() %>% gt(0))
    stop("tidybulk says: You have NA values in your counts")

  # If all good return original data frame
  .data
}

#' Check whether there are NA counts
#'
#' @keywords internal
#' @noRd
#'
#' 
#' 
#' @import tibble
#' @importFrom purrr map
#'
#'
#' @param .data A tibble of read counts
#' @param list_input A list
#' @param expected_type A character string
#'
#' @return A tbl
#'
error_if_wrong_input = function(.data, list_input, expected_type) {




  # Do the check
  if (
    list_input %>%
    map(~ .x %>% class() %>% `[` (1)) %>%
    unlist %>%
    equals(expected_type) %>%
    not()
  )
    stop("tidybulk says: You have passed the wrong argument to the function. Please check again.")

  # If all good return original data frame
  .data
}


#' .formula parser
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom stats terms
#'
#' @param fm a formula
#' @return A character vector
#'
#'
parse_formula <- function(fm) {
  if (attr(terms(fm), "response") == 1)
    stop("tidybulk says: The .formula must be of the kind \"~ covariates\" ")
  else
    as.character(attr(terms(fm), "variables"))[-1]
}

#' Formula parser with survival
#'
#' @keywords internal
#' @noRd
#'
#' @param fm A formula
#'
#' @return A character vector
#'
#'
parse_formula_survival <- function(fm) {
  pars = as.character(attr(terms(fm), "variables"))[-1]

  response = NULL
  if(attr(terms(fm), "response") == 1) response = pars[1]
  covariates = ifelse(attr(terms(fm), "response") == 1, pars[-1], pars)

  list(
    response = response,
    covariates = covariates
  )
}

#' Scale design matrix
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom stats setNames
#' @importFrom stats cov
#'
#' @param df A tibble
#' @param .formula a formula
#'
#' @return A tibble
#'
#'
scale_design = function(df, .formula) {
  df %>%
    setNames(c("sample_idx", "(Intercept)", parse_formula(.formula))) %>%
    gather(cov, value,-sample_idx) %>%
    group_by(cov) %>%
    mutate(value = ifelse(
      !grepl("Intercept", cov) &
        length(union(c(0, 1), value)) != 2,
      scale(value),
      value
    )) %>%
    ungroup() %>%
    spread(cov, value) %>%
    arrange(as.integer(sample_idx)) %>%
    select(`(Intercept)`, any_of(parse_formula(.formula)))
}

get_tt_columns = function(.data){
  if(
    .data %>% attr("internals") %>% is.list() &&
    "tt_columns" %in% names(.data %>% attr("internals"))
    ) #& "internals" %in% (.data %>% attr("internals") %>% names()))
    .data %>% attr("internals") %$% tt_columns
  else NULL
}

#' @importFrom rlang quo_is_symbol
#'
add_tt_columns = function(.data,
                          .sample,
                          .transcript,
                          .abundance,
                          .abundance_scaled = NULL,
													.abundance_adjusted = NULL){

  # Make col names
  .sample = enquo(.sample)
  .transcript = enquo(.transcript)
  .abundance = enquo(.abundance)
  .abundance_scaled = enquo(.abundance_scaled)
  .abundance_adjusted = enquo(.abundance_adjusted)

  # Add tt_columns
  .data %>% attach_to_internals(
     list(
      .sample = .sample,
      .transcript = .transcript,
      .abundance = .abundance
    ) %>%

    # If .abundance_scaled is not NULL add it to tt_columns
    ifelse_pipe(
      .abundance_scaled %>% quo_is_symbol,
      ~ .x %>% c(		list(.abundance_scaled = .abundance_scaled))
    ) %>%

  	ifelse_pipe(
  		.abundance_adjusted %>% quo_is_symbol,
  		~ .x %>% c(		list(.abundance_adjusted = .abundance_adjusted))
  	),
    "tt_columns"
  )

}

initialise_tt_internals = function(.data){
  .data %>%
    ifelse_pipe(
      "internals" %in% ((.) %>% attributes %>% names) %>% not(),
      ~ .x %>% add_attr(list(), "internals")
    )
}

reattach_internals = function(.data, .data_internals_from = NULL){
  if(.data_internals_from %>% is.null)
    .data_internals_from = .data

  .data %>% add_attr(.data_internals_from %>% attr("internals"), "internals")
}

attach_to_internals = function(.data, .object, .name){

  internals =
    .data %>%
    initialise_tt_internals() %>%
    attr("internals")

  # Add tt_bolumns
  internals[[.name]] = .object

  .data %>% add_attr(internals, "internals")
}

drop_internals = function(.data){

  .data %>% drop_attr("internals")
}

memorise_methods_used = function(.data, .method, object_containing_methods = .data){
  # object_containing_methods is used in case for example of test gene rank where the output is a tibble that has lost its attributes

	.data %>%
		attach_to_internals(
		  object_containing_methods %>%
				attr("internals") %>%
				.[["methods_used"]] %>%
				c(.method) %>%	unique(),
			"methods_used"
		)

}

#' Add attribute to abject
#'
#' @keywords internal
#' @noRd
#'
#'
#' @param var A tibble
#' @param attribute An object
#' @param name A character name of the attribute
#'
#' @return A tibble with an additional attribute
add_attr = function(var, attribute, name) {
  attr(var, name) <- attribute
  var
}

#' Drop attribute to abject
#'
#' @keywords internal
#' @noRd
#'
#'
#' @param var A tibble
#' @param name A character name of the attribute
#'
#' @return A tibble with an additional attribute
drop_attr = function(var, name) {
  attr(var, name) <- NULL
  var
}

#' Remove class to abject
#'
#' @keywords internal
#' @noRd
#'
#'
#' @param var A tibble
#' @param name A character name of the class
#'
#' @return A tibble with an additional attribute
drop_class = function(var, name) {
  class(var) <- class(var)[!class(var)%in%name]
  var
}

#' From rlang deprecated
#'
#' @keywords internal
#' @noRd
#'
#' @param x An array
#' @param values An array
#' @param before A boolean
#'
#' @return An array
#'
prepend = function (x, values, before = 1)
{
  n <- length(x)
  stopifnot(before > 0 && before <= n)
  if (before == 1) {
    c(values, x)
  }
  else {
    c(x[1:(before - 1)], values, x[before:n])
  }
}

#' Add class to abject
#'
#' @keywords internal
#' @noRd
#'
#' @param var A tibble
#' @param name A character name of the attribute
#'
#' @return A tibble with an additional attribute
add_class = function(var, name) {

  if(!name %in% class(var)) class(var) <- prepend(class(var),name)

  var
}

#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#' @importFrom rlang quo_is_symbolic
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#' @param .transcript A character name of the transcript/gene column
#' @param .abundance A character name of the read count column
#'
#' @return A list of column enquo or error
get_sample_transcript_counts = function(.data, .sample, .transcript, .abundance){

    if( quo_is_symbolic(.sample) ) .sample = .sample
    else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
      .sample =  get_tt_columns(.data)$.sample
    else my_stop()

    if( quo_is_symbolic(.transcript) ) .transcript = .transcript
    else if(".transcript" %in% (.data %>% get_tt_columns() %>% names))
      .transcript =  get_tt_columns(.data)$.transcript
    else my_stop()

    if(  quo_is_symbolic(.abundance) ) .abundance = .abundance
    else if(".abundance" %in% (.data %>% get_tt_columns() %>% names))
      .abundance = get_tt_columns(.data)$.abundance
    else my_stop()

    list(.sample = .sample, .transcript = .transcript, .abundance = .abundance)

}

#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#' @param .abundance A character name of the read count column
#'
#' @return A list of column enquo or error
get_sample_counts = function(.data, .sample, .abundance){

  if( .sample %>% quo_is_symbol() ) .sample = .sample
  else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
    .sample =  get_tt_columns(.data)$.sample
  else my_stop()

  if( .abundance %>% quo_is_symbol() ) .abundance = .abundance
  else if(".abundance" %in% (.data %>% get_tt_columns() %>% names))
    .abundance = get_tt_columns(.data)$.abundance
  else my_stop()

  list(.sample = .sample, .abundance = .abundance)

}

#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#'
#' @return A list of column enquo or error
get_sample = function(.data, .sample){

  if( .sample %>% quo_is_symbol() ) .sample = .sample
  else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
    .sample =  get_tt_columns(.data)$.sample
  else my_stop()

  list(.sample = .sample)

}

#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .transcript A character name of the transcript column
#'
#' @return A list of column enquo or error
get_transcript = function(.data, .transcript){


  my_stop = function() {
    stop("
        tidybulk says: The function does not know what your sample, transcript and counts columns are.
	You might need to specify the arguments .sample, .transcript and/or .abundance. 
	Please read the documentation of this function for more information.
      ")
  }

  if( .transcript %>% quo_is_symbol() ) .transcript = .transcript
  else if(".transcript" %in% (.data %>% get_tt_columns() %>% names))
    .transcript =  get_tt_columns(.data)$.transcript
  else my_stop()

  list(.transcript = .transcript)

}


#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#' @param .transcript A character name of the transcript/gene column
#'
#' @return A list of column enquo or error
get_sample_transcript = function(.data, .sample, .transcript){

  if( .sample %>% quo_is_symbol() ) .sample = .sample
  else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
    .sample =  get_tt_columns(.data)$.sample
  else my_stop()

  if( .transcript %>% quo_is_symbol() ) .transcript = .transcript
  else if(".transcript" %in% (.data %>% get_tt_columns() %>% names))
    .transcript =  get_tt_columns(.data)$.transcript
  else my_stop()


  list(.sample = .sample, .transcript = .transcript)

}

#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#'
#' @return A list of column enquo or error
get_sample = function(.data, .sample){

  if( .sample %>% quo_is_symbol() ) .sample = .sample
  else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
    .sample =  get_tt_columns(.data)$.sample
  else my_stop()

  list(.sample = .sample)

}



#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .element A character name of the sample column
#' @param .feature A character name of the transcript/gene column
#' @param of_samples A boolean
#'
#' @return A list of column enquo or error
#'
get_elements_features = function(.data, .element, .feature, of_samples = TRUE){

  # If setted by the user, enquo those
  if(
    .element %>% quo_is_symbol() &
    .feature %>% quo_is_symbol()
  )
    return(list(
      .element = .element,
      .feature = .feature
    ))

  # Otherwise check if attribute exists
  else {

    # If so, take them from the attribute
    if(.data %>% get_tt_columns() %>% is.null %>% not())

      return(list(
        .element =  switch(
          of_samples %>% not() %>% sum(1),
          get_tt_columns(.data)$.sample,
          get_tt_columns(.data)$.transcript
        ),
        .feature = switch(
          of_samples %>% not() %>% sum(1),
          get_tt_columns(.data)$.transcript,
          get_tt_columns(.data)$.sample
        )
      ))
    # Else through error
    else
      stop("
        tidybulk says: The function does not know what your sample, transcript and counts columns are.
	You might need to specify the arguments .sample, .transcript and/or .abundance 
	Please read the documentation of this function for more information.
      ")
  }
}

#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .element A character name of the sample column
#' @param .feature A character name of the transcript/gene column
#' @param .abundance A character name of the read count column

#' @param of_samples A boolean
#'
#' @return A list of column enquo or error
#'
get_elements_features_abundance = function(.data, .element, .feature, .abundance, of_samples = TRUE){

  my_stop = function() {
    stop("
          tidybulk says: The function does not know what your sample, transcript and counts columns are.
	You might need to specify the arguments .sample, .transcript and/or .abundance 
	Please read the documentation of this function for more information.
      ")
  }

  if( .element %>% quo_is_symbol() ) .element = .element
  else if(of_samples & ".sample" %in% (.data %>% get_tt_columns() %>% names))
    .element =  get_tt_columns(.data)$.sample
  else if((!of_samples) & ".transcript" %in% (.data %>% get_tt_columns() %>% names))
     .element =  get_tt_columns(.data)$.transcript
  else my_stop()

  if( .feature %>% quo_is_symbol() ) .feature = .feature
  else if(of_samples & ".transcript" %in% (.data %>% get_tt_columns() %>% names))
    .feature =  get_tt_columns(.data)$.transcript
  else if((!of_samples) & ".sample" %in% (.data %>% get_tt_columns() %>% names))
    .feature =  get_tt_columns(.data)$.sample
  else my_stop()

  if( .abundance %>% quo_is_symbol() ) .abundance = .abundance
  else if(".abundance" %in% (.data %>% get_tt_columns() %>% names))
    .abundance = get_tt_columns(.data)$.abundance
  else my_stop()

  list(.element = .element, .feature = .feature, .abundance = .abundance)
}

#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .element A character name of the sample column
#' @param of_samples A boolean
#'
#' @return A list of column enquo or error
get_elements = function(.data, .element, of_samples = TRUE){

  # If setted by the user, enquo those
  if(
    .element %>% quo_is_symbol()
  )
    return(list(
      .element = .element
    ))

  # Otherwise check if attribute exists
  else {

    # If so, take them from the attribute
    if(.data %>% get_tt_columns() %>% is.null %>% not())

      return(list(
        .element =  switch(
          of_samples %>% not() %>% sum(1),
          get_tt_columns(.data)$.sample,
          get_tt_columns(.data)$.transcript
        )
      ))
    # Else through error
    else
      stop("
        tidybulk says: The function does not know what your sample, transcript and counts columns are.
	You might need to specify the arguments .sample, .transcript and/or .abundance. 
	Please read the documentation of this function for more information.
      ")
  }
}

#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .abundance A character name of the abundance column
#'
#' @return A list of column enquo or error
get_abundance_norm_if_exists = function(.data, .abundance){

  # If setted by the user, enquo those
  if(
    .abundance %>% quo_is_symbol()
  )
    return(list(
      .abundance = .abundance
    ))

  # Otherwise check if attribute exists
  else {

    # If so, take them from the attribute
    if(.data %>% get_tt_columns() %>% is.null %>% not())

      return(list(
        .abundance =  switch(
          (".abundance_scaled" %in% (.data %>% get_tt_columns() %>% names) &&
             # .data %>% get_tt_columns() %$% .abundance_scaled %>% is.null %>% not() &&
             quo_name(.data %>% get_tt_columns() %$% .abundance_scaled) %in% (.data %>% colnames)
           ) %>% not() %>% sum(1),
          get_tt_columns(.data)$.abundance_scaled,
          get_tt_columns(.data)$.abundance
        )
      ))
    # Else through error
    else
      stop("
        tidybulk says: The function does not know what your sample, transcript and counts columns are.
	You might need to specify the arguments .sample, .transcript and/or .abundance. 
	Please read the documentation of this function for more information.
      ")
  }
}

#' Sub function of remove_redundancy_elements_though_reduced_dimensions
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom stats dist
#' @importFrom utils head
#'
#' @param df A tibble
#'
#'
#' @return A tibble with pairs to drop
select_closest_pairs = function(df) {
  couples <- df %>% head(n = 0)

  while (df %>% nrow() > 0) {
    pair <- df %>%
      arrange(dist) %>%
      head(n = 1)
    couples <- couples %>% bind_rows(pair)
    df <- df %>%
      filter(
        !`sample 1` %in% (pair %>% select(1:2) %>% as.character()) &
          !`sample 2` %in% (pair %>% select(1:2) %>% as.character())
      )
  }

  couples

}

#' This function is needed for DE in case the matrix is not rectangular, but includes NA
#'
#' @keywords internal
#' @noRd
#'
#' @param .matrix A matrix
#'
#' @return A matrix
fill_NA_with_row_median = function(.matrix){

  if(length(which(rowSums(is.na(.matrix)) > 0)) > 0)
    rbind(
      .matrix[rowSums(is.na(.matrix)) == 0,],
      apply(.matrix[rowSums(is.na(.matrix)) > 0,], 1, FUN = function(.x) { .x[is.na(.x)] = median(.x, na.rm = TRUE); .x}) %>% t
    )
  else
    .matrix
}



#' get_x_y_annotation_columns
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom magrittr equals
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment))
#' @param .horizontal The name of the column horizontally presented in the heatmap
#' @param .vertical The name of the column vertically presented in the heatmap
#' @param .abundance The name of the transcript/gene abundance column
#' @param .abundance_scaled The name of the transcript/gene scaled abundance column
#'
#' @description This function recognise what are the sample-wise columns and transcrip-wise columns
#'
#' @return A list
#'
get_x_y_annotation_columns = function(.data, .horizontal, .vertical, .abundance, .abundance_scaled){


  # Comply with CRAN NOTES
  . = NULL

  # Make col names
  .horizontal = enquo(.horizontal)
  .vertical = enquo(.vertical)
  .abundance = enquo(.abundance)
  .abundance_scaled = enquo(.abundance_scaled)

  # x-annotation df
  n_x = .data %>% select(!!.horizontal) |> distinct() |> nrow()
  n_y = .data %>% select(!!.vertical) |> distinct() |> nrow()

  # Sample wise columns
  horizontal_cols=
    .data %>%
    select(-!!.horizontal, -!!.vertical, -!!.abundance) %>%
    colnames %>%
    map(
      ~
        .x %>%
        when(
          .data %>%
            select(!!.horizontal, !!as.symbol(.x)) %>%
            distinct() |>
            nrow() %>%
            equals(n_x) ~ .x,
          ~ NULL
        )
    ) %>%

    # Drop NULL
    {	(.)[lengths((.)) != 0]	} %>%
    unlist

  # Transcript wise columns
  vertical_cols=
    .data %>%
    select(-!!.horizontal, -!!.vertical, -!!.abundance, -horizontal_cols) %>%
    colnames %>%
    map(
      ~
        .x %>%
        ifelse_pipe(
          .data %>%
            select(!!.vertical, !!as.symbol(.x)) |>
            distinct() |>
            nrow() %>%
            equals(n_y),
          ~ .x,
          ~ NULL
        )
    ) %>%

    # Drop NULL
    {	(.)[lengths((.)) != 0]	} %>%
    unlist

  # Counts wise columns, at the moment scaled counts is treated as special and not accounted for here
  counts_cols =
    .data %>%
    select(-!!.horizontal, -!!.vertical, -!!.abundance) %>%

    # Exclude horizontal
    ifelse_pipe(!is.null(horizontal_cols),  ~ .x %>% select(-horizontal_cols)) %>%

    # Exclude vertical
    ifelse_pipe(!is.null(vertical_cols),  ~ .x %>% select(-vertical_cols)) %>%

    # Exclude scaled counts if exist
    ifelse_pipe(.abundance_scaled %>% quo_is_symbol,  ~ .x %>% select(-!!.abundance_scaled) ) %>%

    # Select colnames
    colnames %>%

    # select columns
    map(
      ~
        .x %>%
        ifelse_pipe(
          .data %>%
            select(!!.vertical, !!.horizontal, !!as.symbol(.x)) %>%
            distinct() |>
            nrow() %>%
            equals(n_x * n_y),
          ~ .x,
          ~ NULL
        )
    ) %>%

    # Drop NULL
    {	(.)[lengths((.)) != 0]	} %>%
    unlist

  list(  horizontal_cols = horizontal_cols,  vertical_cols = vertical_cols, counts_cols = counts_cols )
}

get_specific_annotation_columns = function(.data, .col){


  # Comply with CRAN NOTES
  . = NULL

  # Make col names
  .col = enquo(.col)

  # x-annotation df
  n_x = .data %>% distinct(!!.col) %>% nrow

  # Sample wise columns
  .data %>%
  select(-!!.col) %>%
  colnames %>%
  map(
    ~
      .x %>%
      ifelse_pipe(
        .data %>%
          distinct(!!.col, !!as.symbol(.x)) %>%
          nrow() %>%
          equals(n_x),
        ~ .x,
        ~ NULL
      )
  ) %>%

  # Drop NULL
  {	(.)[lengths((.)) != 0]	} %>%
  unlist

}




#' Convert array of quosure (e.g. c(col_a, col_b)) into character vector
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_name
#' @importFrom rlang quo_squash
#'
#' @param v A array of quosures (e.g. c(col_a, col_b))
#'
#' @return A character vector
quo_names <- function(v) {

	v = quo_name(quo_squash(v))
	gsub('^c\\(|`|\\)$', '', v) %>%
		strsplit(', ') %>%
		unlist
}

# Greater than
gt = function(a, b){	a > b }

# Smaller than
st = function(a, b){	a < b }

# Negation
not = function(is){	!is }

# Raise to the power
pow = function(a,b){	a^b }

outersect <- function(x, y) {
	sort(c(setdiff(x, y),
				 setdiff(y, x)))
}

do_validate = function(){

	if(!"tidybulk_do_validate" %in% names(options())) TRUE
	else getOption("tidybulk_do_validate")

}

#'
#' @keywords internal
#' @noRd
#'
#' @importFrom stringr str_remove
#' @importFrom stringr str_replace_all
#'
multivariable_differential_tissue_composition = function(
	deconvoluted,
	method,
	.my_formula,
	min_detected_proportion
){
	results_regression =
		deconvoluted %>%

		# Replace 0s - before
		mutate(across(starts_with(method), function(.x) if_else(.x==0, min_detected_proportion, .x))) %>%
		mutate(across(starts_with(method), boot::logit)) %>%

		# Rename columns - after
		setNames(
			str_remove(colnames(.), sprintf("%s:", method)) %>%
				str_replace_all("[ \\(\\)]", "___")
		) %>%

		# Beta or Cox
		when(
			grepl("Surv", .my_formula) %>% any ~ {
			  
				# Check if package is installed, otherwise install
			  check_and_install_packages(c("survival", "boot"))
			  

				(.) %>%
					survival::coxph(.my_formula, .)	%>%
					broom::tidy()
			} ,
			~ {
				(.) %>%
					lm(.my_formula, .) %>%
					broom::tidy() %>%
					filter(term != "(Intercept)")
			}
		)

	# Join results
	deconvoluted %>%
		pivot_longer(
			names_prefix = sprintf("%s: ", method),
			cols = starts_with(method),
			names_to = ".cell_type",
			values_to = ".proportion"
		) %>%
		tidyr::nest(cell_type_proportions = -.cell_type) %>%
		bind_cols(
			results_regression %>%
				select(-term)
		)
}

univariable_differential_tissue_composition = function(
	deconvoluted,
	method,
	.my_formula,
	min_detected_proportion
){
		deconvoluted %>%

		# Test
		pivot_longer(
			names_prefix = sprintf("%s: ", method),
			cols = starts_with(method),
			names_to = ".cell_type",
			values_to = ".proportion"
		) %>%

		# Replace 0s
		mutate(.proportion_0_corrected = if_else(.proportion==0, min_detected_proportion, .proportion)) %>%

		# Test survival
		tidyr::nest(cell_type_proportions = -.cell_type) %>%
		mutate(surv_test = map(
			cell_type_proportions,
			~ {
				if(pull(., .proportion_0_corrected) %>% unique %>% length %>%  `<=` (3)) return(NULL)

				# See if regression if censored or not
				.x %>%
					when(
						grepl("Surv", .my_formula) %>% any ~ {
							# Check if package is installed, otherwise install
						  check_and_install_packages(c("survival", "boot"))
						  

							(.) %>%
								mutate(.proportion_0_corrected = .proportion_0_corrected  %>% boot::logit()) %>%
								survival::coxph(.my_formula, .)	%>%
								broom::tidy() %>%
								select(-term)
						} ,
						~ {
							# Check if package is installed, otherwise install
						  check_and_install_packages("betareg")
						  
							(.) %>%
								betareg::betareg(.my_formula, .) %>%
								broom::tidy() %>%
								filter(component != "precision") %>%
								pivot_wider(names_from = term, values_from = c(estimate, std.error, statistic,   p.value)) %>%
								select(-c(`std.error_(Intercept)`, `statistic_(Intercept)`, `p.value_(Intercept)`)) %>%
								select(-component)
						}
					)
			}
		)) %>%

		unnest(surv_test, keep_empty = TRUE)
}

univariable_differential_tissue_stratification = function(
	deconvoluted,
	method,
	.my_formula
){

	# Check if package is installed, otherwise install
  check_and_install_packages(c("survival", "survminer"))



  check_and_install_packages("broom")
  

	deconvoluted %>%

		# Test
		pivot_longer(
			names_prefix = sprintf("%s: ", method),
			cols = starts_with(method),
			names_to = ".cell_type",
			values_to = ".proportion"
		) %>%

		# Test survival
		tidyr::nest(cell_type_proportions = -.cell_type) %>%
		mutate(surv_test = map(
			cell_type_proportions,
			~ {

				data = .x %>%
					mutate(.high_cellularity = .proportion > median(.proportion))

				if(data %>%
					 distinct(.high_cellularity) %>%
					 nrow() %>%
					 equals(1)
				) return(NULL)

				# See if regression if censored or not
				fit = survival::survdiff(data = data, .my_formula)

				p =
					survminer::surv_fit(data = data, .my_formula) %>%
					survminer::ggsurvplot(
						fit=.,
						data = data,
						risk.table = FALSE,
						conf.int = TRUE,
						palette = c("#ed6f68",  "#5366A0" ),
						legend = "none",
						pval = TRUE
					)

				fit %>%
					broom::tidy() %>%
					select(-N, -obs) %>%
					spread(.high_cellularity, exp) %>%
					setNames(c(".low_cellularity_expected", ".high_cellularity_expected")) %>%
					mutate(pvalue = 1 - pchisq(fit$chisq, length(fit$n) - 1)) %>%
					mutate(plot = list(p))

			}
		)) %>%

		unnest(surv_test, keep_empty = TRUE)
}

univariable_differential_tissue_stratification_SE = function(
	deconvoluted,
	method,
	.my_formula
){

	# Check if package is installed, otherwise install
  check_and_install_packages(c("survival", "survminer", "broom"))
  

	deconvoluted %>%

		pivot_sample() %>%

		# Test
		pivot_longer(
			names_prefix = sprintf("%s: ", method),
			cols = starts_with(method),
			names_to = ".cell_type",
			values_to = ".proportion"
		) %>%

		# Test survival
		tidyr::nest(cell_type_proportions = -.cell_type) %>%
		mutate(surv_test = map(
			cell_type_proportions,
			~ {

				data = .x %>%
					mutate(.high_cellularity = .proportion > median(.proportion))

				if(data %>%
					 distinct(.high_cellularity) %>%
					 nrow() %>%
					 equals(1)
				) return(NULL)

				# See if regression if censored or not
				fit = survival::survdiff(data = data, .my_formula)

				p =
					survminer::surv_fit(data = data, .my_formula) %>%
					survminer::ggsurvplot(
						fit=.,
						data = data,
						risk.table = FALSE,
						conf.int = TRUE,
						palette = c("#ed6f68",  "#5366A0" ),
						legend = "none",
						pval = TRUE
					)

				fit %>%
					broom::tidy() %>%
					select(-N, -obs) %>%
					spread(.high_cellularity, exp) %>%
					setNames(c(".low_cellularity_expected", ".high_cellularity_expected")) %>%
					mutate(pvalue = 1 - pchisq(fit$chisq, length(fit$n) - 1)) %>%
					mutate(plot = list(p))

			}
		)) %>%

		unnest(surv_test, keep_empty = TRUE)
}

# Function that rotates a 2D space of a arbitrary angle
rotation = function(m, d) {
	r = d * pi / 180
	((bind_rows(
		c(`1` = cos(r), `2` = -sin(r)),
		c(`1` = sin(r), `2` = cos(r))
	) %>% as_matrix) %*% m)
}

combineByRow <- function(m, fun = NULL) {
  # Shown here
  #https://stackoverflow.com/questions/8139301/aggregate-rows-in-a-large-matrix-by-rowname

  m <- m[ order(rownames(m)), ,drop=FALSE]

  ## keep track of previous row name
  prev <- rownames(m)[1]
  i.start <- 1
  i.end <- 1

  ## cache the rownames -- profiling shows that it takes
  ## forever to look at them
  m.rownames <- rownames(m)
  stopifnot(all(!is.na(m.rownames)))


  ## go through matrix in a loop, as we need to combine some unknown
  ## set of rows
  for (i in 2:(1+nrow(m))) {

    curr <- m.rownames[i]

    ## if we found a new row name (or are at the end of the matrix),
    ## combine all rows and mark invalid rows
    if (prev != curr || is.na(curr)) {
      if (i.start < i.end) {
        m[i.start,] <- apply(m[i.start:i.end,,drop=FALSE], 2, fun)
        m.rownames[(1+i.start):i.end] <- NA
      }

      prev <- curr
      i.start <- i
    } else {
      i.end <- i
    }
  }

  m[ which(!is.na(m.rownames)),,drop=FALSE]
}

filter_genes_on_condition = function(.data, .subset_for_scaling){

  .subset_for_scaling = enquo(.subset_for_scaling)

  # Get genes from condition
  my_genes =
    rowData(.data) %>%
    as_tibble(rownames=".feature") %>%
    filter(!!.subset_for_scaling) %>%
    pull(.feature)

  .data[rownames(.data) %in% my_genes,]

}


which_NA_matrix = function(.data){
  is_na <- which(is.na(.data), arr.ind=TRUE)
  which_is_NA = fill_matrix_with_FALSE(.data )
  which_is_NA[is_na] <- TRUE
  which_is_NA
}

fill_matrix_with_FALSE = function(.data){
  .data[,] = FALSE
  .data
}

rowMedians = function(.data, na.rm){
  apply(.data, 1, median, na.rm=na.rm)
}

fill_NA_matrix_with_factor_colwise = function(.data, factor){

  rn = rownames(.data)
  cn = colnames(.data)

  .data %>%
    t %>%
    split.data.frame(factor) %>%
    map(~ t(.x)) %>%

    # Fill
    map(
      ~ {
        k <- which(is.na(.x), arr.ind=TRUE)
        .x[k] <- rowMedians(.x, na.rm=TRUE)[k[,1]]
        .x
      }
    ) %>%

    # Add NA factors if any
    when(
      is.na(factor) %>% length() %>% gt(0) ~ (.) %>% c(list(.data[,is.na(factor)])),
      ~ (.)
    ) %>%

    # Merge
    reduce(cbind) %>%

    # Reorder rows and column as it was
    .[rn, cn]

}

select_non_standard_column_class = function(.x){
  !is.numeric(.x) & !is.character(.x) & !is.factor(.x) & !is.logical(.x)
}

get_special_column_name_symbol = function(name){
  list(name = name, symbol = as.symbol(name))
}

feature__ =  get_special_column_name_symbol(".feature")
sample__ = get_special_column_name_symbol(".sample")

check_and_install_packages <- function(packages) {
  # Separate GitHub packages from CRAN/Bioconductor packages
  github_packages <- packages[grepl("/", packages)]
  regular_packages <- packages[!grepl("/", packages)]
  
  # Check if regular packages are installed
  missing_regular_packages <- regular_packages[!sapply(regular_packages, requireNamespace, quietly = TRUE)]
  
  # Check if GitHub packages are installed
  missing_github_packages <- github_packages[!sapply(gsub(".*/", "", github_packages), requireNamespace, quietly = TRUE)]
  
  # Combine all missing packages
  missing_packages <- c(missing_regular_packages, missing_github_packages)
  
  # If any packages are missing, print installation instructions
  if (length(missing_packages) > 0) {
    stop(
      "tidybulk says: The following packages are required:\n",
      paste("  -", missing_packages, collapse = "\n"), "\n",
      "Please install them by running:\n",
      "  if (!requireNamespace('BiocManager', quietly = TRUE))\n",
      "    install.packages('BiocManager', repos = 'https://cloud.r-project.org')\n",
      paste0(
        "  BiocManager::install(c(", 
        paste0("'", missing_packages, "'", collapse = ", "), 
        "), ask = FALSE)"
      )
    )
  }
}

#' Drop Environment from a Quosure
#'
#' Takes a quosure and resets its environment to `emptyenv()` without altering
#' its expression.
#'
#' @param q A quosure object to have its environment stripped.
#' @return A quosure with the same expression but environment set to `emptyenv()`.
#'
#' @importFrom rlang is_quosure
#' @importFrom rlang quo_set_env
#'
#' @examples
#' library(rlang)
#'
#' q <- quo(x + y)
#' environment(q)
#'
#' q_stripped <- drop_enquo_env(q)
#' identical(quo_get_env(q_stripped), emptyenv()) # TRUE
#'
#' @noRd
drop_enquo_env <- function(q) {
  if (!rlang::is_quosure(q)) {
    stop("`q` must be a quosure.")
  }
  rlang::quo_set_env(q, emptyenv())
}
stemangiola/ttBulk documentation built on Dec. 14, 2024, 6:12 a.m.