#' Heatmap Plots
#'
#' @description These functions create heatmap `COEX` plots.
#'
#' @name HeatmapPlots
NULL
#' @details `singleHeatmapDF()` creates the `heatmap` `data.frame` of one
#' `COTAN` object
#'
#' @param objCOTAN a `COTAN` object
#' @param genesLists A `list` of genes' `array`s. The first `array` defines the
#' genes in the columns
#' @param sets A numeric array indicating which fields in the previous `list`
#' should be used. Defaults to all fields
#' @param pValueThreshold The p-value threshold. Default is 0.01
#'
#' @returns `singleHeatmapDF()` returns a `data.frame`
#'
#' @importFrom tidyr pivot_longer
#'
#' @importFrom rlang is_empty
#' @importFrom rlang is_integer
#'
#' @importFrom assertthat assert_that
#'
#' @rdname HeatmapPlots
#'
singleHeatmapDF <- function(objCOTAN,
genesLists, sets,
pValueThreshold = 0.01) {
assert_that(!is_empty(genesLists), !is_empty(names(genesLists)),
msg = "genesLists must be a named list of genes arrays")
assert_that(!is_empty(sets), is_integer(sets),
max(sets) <= length(genesLists),
msg = "sets must be positions in the genes list")
cond <- getMetadataElement(objCOTAN, datasetTags()[["cond"]])
logThis(paste("Hangling COTAN object with condition:", cond), logLevel = 2L)
allGenes <- getGenes(objCOTAN)
colGenes <- genesLists[[1L]]
genesLists <- genesLists[sets]
askedGenes <- unique(unlist(genesLists))
assert_that(any(colGenes %in% allGenes),
msg = "none of primary markers are available in the COTAN object")
#---------------------------------------------------------
pValue <-
calculatePValue(objCOTAN,
geneSubsetCol = allGenes[allGenes %in% colGenes],
geneSubsetRow = allGenes[allGenes %in% askedGenes])
pValue <- as.data.frame(pValue)
pValue <- setColumnInDF(pValue, colToSet = rownames(pValue), colName = "g2")
dfValue <- pivot_longer(pValue, cols = seq_len(ncol(pValue)) - 1L,
names_to = "g1", values_to = "pValue")
rm(pValue)
#---------------------------------------------------------
coex <- getGenesCoex(objCOTAN, genes = allGenes[allGenes %in% colGenes])
coex <- coex[allGenes %in% askedGenes, , drop = FALSE]
coex <- as.data.frame(coex)
coex <- setColumnInDF(coex, colToSet = rownames(coex), colName = "g2")
dfCoex <- pivot_longer(coex, cols = seq_len(ncol(coex)) - 1L,
names_to = "g1", values_to = "coex")
rm(coex)
#---------------------------------------------------------
assert_that(identical(colnames(dfValue)[-3L], colnames(dfCoex)[-3L]))
dfMerge <- merge(dfCoex, dfValue)
dfMerge[["cond"]] <- cond
dfMerge[["type"]] <- NA
dfMerge[["absent"]] <- FALSE
rm(dfCoex, dfValue)
#---------------------------------------------------------
dfRet <- data.frame()
for (genesType in names(genesLists)) {
logThis(paste("Handling genes type:", genesType), logLevel = 3L)
rowGenes <- genesLists[[genesType]]
for (g1 in colGenes) {
genesToUse <- (dfMerge[["g2"]] %in% rowGenes) & (dfMerge[["g1"]] == g1)
dfSlice <- dfMerge[genesToUse, , drop = FALSE]
# control if the subset is smaller than the number of wanted genes
numMissingRows <- length(rowGenes) - nrow(dfSlice)
if (numMissingRows > 0L) {
extraRows <- as.data.frame(matrix(nrow = numMissingRows,
ncol = ncol(dfSlice)))
colnames(extraRows) <- colnames(dfSlice)
extraRows[, "g1"] <- g1
extraRows[, "cond"] <- cond
extraRows[, "absent"] <- TRUE
extraRows[, "pValue"] <- 1.0
extraRows[, "g2"] <- rowGenes[!(rowGenes %in% dfSlice[["g2"]])]
dfSlice <- rbind(dfSlice, extraRows)
}
# now dfSlice has the right number of rows
assert_that(nrow(dfSlice) == length(rowGenes))
dfSlice[["type"]] <- genesType
dfRet <- rbind(dfRet, dfSlice)
}
}
dfRet[["fe_genes"]] <- (dfRet[["g2"]] %in% getFullyExpressedGenes(objCOTAN)) |
(dfRet[["g1"]] %in% getFullyExpressedGenes(objCOTAN))
dfRet[dfRet[["pValue"]] > pValueThreshold, "coex"] <- 0.0
return(dfRet)
}
#' @details `heatmapPlot()` creates the `heatmap` of one or more `COTAN` objects
#'
#' @param objCOTAN a `COTAN` object
#' @param genesLists A `list` of genes' `array`s. The first `array` defines the
#' genes in the columns
#' @param sets A numeric array indicating which fields in the previous `list`
#' should be used. Defaults to all fields
#' @param pValueThreshold The \eqn{p}-value threshold. Default is \eqn{0.01}
#' @param conditions An `array` of prefixes indicating the different files
#' @param dir The directory in which are all `COTAN` files (corresponding to the
#' previous prefixes)
#'
#' @returns `heatmapPlot()` returns a `ggplot2` object
#'
#' @importFrom ggplot2 ggplot
#' @importFrom ggplot2 aes
#' @importFrom ggplot2 geom_point
#' @importFrom ggplot2 facet_grid
#' @importFrom ggplot2 scale_fill_gradient2
#'
#' @importFrom scales squish
#'
#' @importFrom assertthat assert_that
#'
#' @importFrom rlang is_empty
#'
#' @export
#'
#' @examples
#' data("test.dataset")
#' objCOTAN <- COTAN(raw = test.dataset)
#' objCOTAN <- clean(objCOTAN)
#' objCOTAN <- estimateDispersionNuBisection(objCOTAN, cores = 6L)
#' objCOTAN <- calculateCoex(objCOTAN, actOnCells = FALSE)
#' objCOTAN <- calculateCoex(objCOTAN, actOnCells = TRUE)
#'
#' ## some genes
#' primaryMarkers <- c("g-000010", "g-000020", "g-000030")
#'
#' ## an example of named list of different gene set
#' groupMarkers <- list(G1 = primaryMarkers,
#' G2 = c("g-000300", "g-000330"),
#' G3 = c("g-000510", "g-000530", "g-000550",
#' "g-000570", "g-000590"))
#'
#' hPlot <- heatmapPlot(objCOTAN, pValueThreshold = 0.05,
#' genesLists = groupMarkers, sets = 2L:3L)
#' plot(hPlot)
#'
#' @rdname HeatmapPlots
#'
heatmapPlot <- function(objCOTAN = NULL,
genesLists,
sets = NULL,
pValueThreshold = 0.01,
conditions = NULL,
dir = ".") {
logThis("heatmap plot: START", logLevel = 2L)
assert_that(is.null(objCOTAN) != is_empty(conditions),
msg = paste("Please pass either a COTAN object",
"or an array of conditions"))
if (is_empty(sets)) {
sets <- seq_along(genesLists)
}
dfToPrint <- data.frame()
if (!is.null(objCOTAN)) {
dfToPrint <- singleHeatmapDF(objCOTAN, genesLists = genesLists,
sets = sets, pValueThreshold = pValueThreshold)
} else {
for (cond in conditions) {
logThis(paste0("Loading condition '", cond, "'"), logLevel = 3L)
tempObj <- tryCatch({
readRDS(file.path(dir, paste0(cond, ".cotan.RDS")))
},
error = function(err) {
logThis(paste("While loading the COTAN object with file name",
paste0(cond, ".cotan.RDS"), "got an error:", err),
logLevel = 0L)
return(NULL)
})
if (is.null(obj)) {
next
}
dfTemp <- singleHeatmapDF(tempObj, genesLists = genesLists,
sets = sets, pValueThreshold = pValueThreshold)
rm(tempObj)
dfToPrint <- rbind(dfToPrint, dfTemp)
}
}
logThis(paste("min coex:", min(dfToPrint[["coex"]], na.rm = TRUE),
"max coex:", max(dfToPrint[["coex"]], na.rm = TRUE)),
logLevel = 2L)
heatmap <- ggplot(data = subset(dfToPrint, type %in% names(genesLists)[sets]),
aes(cond, factor(g2, levels = rev(levels(factor(g2)))))) +
geom_tile(aes(fill = coex), colour = "black", show.legend = TRUE) +
facet_grid(type ~ g1, scales = "free", space = "free") +
scale_fill_gradient2(low = "#E64B35FF", mid = "gray93",
high = "#3C5488FF", midpoint = 0L,
na.value = "grey80", space = "Lab",
guide = "colourbar", aesthetics = "fill",
oob = squish) +
plotTheme("heatmap", textSize = 9L)
return(heatmap)
}
#' @details `genesHeatmapPlot()` is used to plot an *heatmap* made using only
#' some genes, as markers, and collecting all other genes correlated with
#' these markers with a p-value smaller than the set threshold. Than all
#' relations are plotted. Primary markers will be plotted as groups of rows.
#' Markers list will be plotted as columns.
#'
#' @param objCOTAN a `COTAN` object
#' @param primaryMarkers A set of genes plotted as rows
#' @param secondaryMarkers A set of genes plotted as columns
#' @param pValueThreshold The p-value threshold. Default is 0.01
#' @param symmetric A Boolean: default `TRUE`. When `TRUE` the union of
#' `primaryMarkers` and `secondaryMarkers` is used for both rows and column
#' genes
#'
#' @returns `genesHeatmapPlot()` returns a `ggplot2` object
#'
#' @export
#'
#' @importFrom ComplexHeatmap Heatmap
#' @importFrom ComplexHeatmap Legend
#' @importFrom ComplexHeatmap draw
#'
#' @importFrom grid gpar
#'
#' @importFrom stats quantile
#'
#' @importFrom circlize colorRamp2
#'
#' @importFrom rlang is_empty
#'
#' @examples
#' ghPlot <- genesHeatmapPlot(objCOTAN, primaryMarkers = primaryMarkers,
#' secondaryMarkers = groupMarkers,
#' pValueThreshold = 0.05, symmetric = FALSE)
#' plot(ghPlot)
#'
#' @rdname HeatmapPlots
#'
genesHeatmapPlot <-
function(objCOTAN, primaryMarkers,
secondaryMarkers = vector(mode = "character"),
pValueThreshold = 0.01, symmetric = TRUE) {
if (isTRUE(symmetric)) {
secondaryMarkers <- as.list(c(unlist(primaryMarkers),
unlist(secondaryMarkers)))
}
if (is_empty(secondaryMarkers)) {
secondaryMarkers <- as.list(primaryMarkers)
} else {
secondaryMarkers <- as.list(secondaryMarkers)
}
allMarkers <- unique(c(unlist(secondaryMarkers), unlist(primaryMarkers)))
unexpressedGenes <- allMarkers[!allMarkers %in% getGenes(objCOTAN)]
if (!is_empty(unexpressedGenes)) {
warning("The markers ", toString(unexpressedGenes),
" are not present in the COTAN object!")
}
pValue <- calculatePValue(objCOTAN)[, allMarkers]
pvalFloored <- apply(pValue, 1.0, FUN = min)
rowGenes <- names(pvalFloored)[pvalFloored < pValueThreshold]
rowGenes <- unique(c(allMarkers, rowGenes))
pValue <- as.data.frame(pValue)
coex <- getGenesCoex(objCOTAN)[getGenes(objCOTAN) %in% rowGenes, ]
if (isTRUE(symmetric)) {
coex <- coex[, getGenes(objCOTAN) %in% rowGenes]
}
listRows <- list()
for (m in unlist(secondaryMarkers)) {
genes <- rownames(pValue[pValue[, m] < pValueThreshold, ])
genes <- genes[genes %in% rownames(coex[coex[, m] > 0.0, ])]
listRows[[m]] <- genes
}
clGenesRows <- data.frame()
for (g in names(listRows)) {
tmp <- data.frame("genes" = listRows[[g]],
"cl" = rep(g, length(listRows[[g]])))
clGenesRows <- rbind(clGenesRows, tmp)
}
reorderIdxRow <- match(clGenesRows[["genes"]], rownames(coex))
listCols <- list()
for (m in primaryMarkers) {
genes <- rownames(pValue[pValue[, m] < pValueThreshold, ])
genes <- genes[genes %in% rownames(coex[coex[, m] > 0.0, ])]
listCols[[m]] <- genes
}
if (isTRUE(symmetric)) {
clGenesCols <- clGenesRows
} else {
clGenesCols <- data.frame()
for (g in names(listCols)) {
tmp <- data.frame("genes" = listCols[[g]],
"cl" = rep(g, length(listCols[[g]])))
clGenesCols <- rbind(clGenesCols, tmp)
}
}
clGenesCols <- clGenesCols[clGenesCols[["genes"]] %in% colnames(coex), ]
reorderIdxCol <- match(clGenesCols[["genes"]], colnames(coex))
coex <- coex[reorderIdxRow, reorderIdxCol]
colFun <- colorRamp2(
c(round(quantile(as.matrix(coex), probs = 0.001), digits = 3L),
0.0,
round(quantile(as.matrix(coex), probs = 0.999), digits = 3L)),
c("#E64B35FF", "gray93", "#3C5488FF")
)
# The next line is to set the columns and raws order
# need to be implemented
part1 <- Heatmap(as.matrix(coex),
cluster_rows = FALSE,
cluster_columns = FALSE,
row_split = clGenesRows[["cl"]],
column_split = clGenesCols[["cl"]],
col = colFun,
show_row_names = FALSE,
show_column_names = FALSE,
column_title_gp = gpar(
fill = "#8491B44C", font = 3L,
col = "#3C5488FF"
),
row_title_gp = gpar(fill = "#8491B44C", font = 3L, col = "#3C5488FF")
)
lgd <- Legend(
col_fun = colFun, title = "coex", grid_width = unit(0.3, "cm"),
direction = "horizontal", title_position = "topcenter",
title_gp = gpar(fontsize = 10L, fontface = "bold", col = "#3C5488FF"),
labels_gp = gpar(col = "#3C5488FF", font = 3L)
)
draw(part1,
show_heatmap_legend = FALSE,
annotation_legend_list = lgd, annotation_legend_side = "bottom"
)
}
#' @details `cellsHeatmapPlot()` creates the heatmap plot of the cells' `COEX`
#' matrix
#'
#' @param objCOTAN a `COTAN` object
#' @param cells Which cells to plot (all if no argument is given)
#' @param clusters Use this clusterization to select/reorder the cells to plot
#'
#' @returns `cellsHeatmapPlot()` returns the cells' `COEX` *heatmap* plot
#'
#' @export
#'
#' @importFrom rlang is_empty
#'
#' @importFrom assertthat assert_that
#'
#' @importFrom ComplexHeatmap Heatmap
#'
#' @examples
#' clusters <- c(rep_len("1", getNumCells(objCOTAN)/2),
#' rep_len("2", getNumCells(objCOTAN)/2))
#' names(clusters) <- getCells(objCOTAN)
#'
#' chPlot <- cellsHeatmapPlot(objCOTAN, clusters = clusters)
#' ## plot(chPlot)
#'
#' @rdname HeatmapPlots
#'
cellsHeatmapPlot <- function(objCOTAN, cells = NULL, clusters = NULL) {
coexMat <- as.matrix(getCellsCoex(objCOTAN))
assert_that(!is_empty(coexMat), msg = "cells coex not found in the COTAN")
# if clustering is needed
if (!is_empty(clusters)) {
# identifier for each cluster
clustersTags <- levels(factor(clusters))
# size of each cluster
clustersList <- toClustersList(clusters)
clustersSize <- lengths(clustersList)
# cell names grouped by the identifier of the cluster to which they belong
cellNames <- unlist(clustersList)
coexMat <- coexMat[cellNames, cellNames]
colnames(coexMat) <- cellNames
rownames(coexMat) <- cellNames
Heatmap(coexMat,
border = TRUE,
column_split = factor(rep(clustersTags, clustersSize),
levels = clustersTags),
row_split = factor(rep(clustersTags, clustersSize),
levels = clustersTags),
cluster_rows = FALSE,
cluster_columns = FALSE)
} else {
cells <- handleNamesSubsets(getCells(objCOTAN), cells)
Heatmap(coexMat[cells, cells],
cluster_rows = FALSE,
cluster_columns = FALSE)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.