MakeOverviewBlocks <- function(ff, peaks, time_channel){
run_length <- rle(peaks$GoodCells)
full_QC_vector <- ifelse(peaks$GoodCells == TRUE, TRUE, FALSE)
consecutive_cells <- which(peaks$ConsecutiveCells == FALSE)
if (length(consecutive_cells) > 0) {
full_QC_vector[!peaks$ConsecutiveCells] <- "consecutive"
run_length <- rle(full_QC_vector)
}
mad_cells <- which(peaks$OutlierMads == FALSE)
if (length(mad_cells) > 0) {
full_QC_vector[!peaks$OutlierMads] <- "mad"
run_length <- rle(full_QC_vector)
}
fill_blocks <- ifelse(run_length$values == TRUE, "Good Values",
ifelse(run_length$values == "consecutive",
"In consecutive bins",
ifelse(run_length$values == FALSE, "IT",
"MAD")))
x_min <- c(1, cumsum(run_length$lengths)[-length(run_length$lengths)])
x_max <- cumsum(run_length$lengths)
overview_blocks <- data.frame(x_min=x_min,
x_max=x_max,
y_min=-Inf,
y_max=Inf,
fill_blocks=fill_blocks)
if(!is.null(time_channel)){
overview_blocks_time <- NULL
if (length(time_channel) > 0){
x_min <- flowCore::exprs(ff)[, time_channel][c(1,
cumsum(run_length$lengths)[-length(run_length$lengths)])]
x_max <- flowCore::exprs(ff)[, time_channel][cumsum(run_length$lengths)]
overview_blocks_time <- data.frame(x_min=x_min,
x_max=x_max,
y_min=-Inf,
y_max=Inf,
fill_blocks=fill_blocks)
}} else{overview_blocks_time <- NULL}
return(list("Overview_blocks"=overview_blocks,
"overview_blocks_time"=overview_blocks_time))
}
MakeManualBlocks <- function(manual_cells){
run_length_man <- rle(manual_cells)
fill_blocks_man <- ifelse(
run_length_man$values,
"deepskyblue1",
"indianred1")
x_min_man <- c(1,
cumsum(run_length_man$lengths)
[-length(run_length_man$lengths)])
x_max_man <- cumsum(run_length_man$lengths)
manual_blocks <- data.frame(x_min=x_min_man,
x_max=x_max_man,
y_min=-Inf,
y_max=Inf,
fill_blocks=fill_blocks_man)
return(manual_blocks)
}
BuildTimePlot <- function(ff, blocks=NULL, scores_time, time_unit=100, time_id){
if (nrow(ff) >=50000) {
subset_timeplot <- sort(sample(seq_len(nrow(ff)), 50000))
} else {
subset_timeplot <- seq_len(nrow(ff))
}
h <- graphics::hist(flowCore::exprs(ff)[subset_timeplot, time_id],
breaks=seq(min(flowCore::exprs(ff)[, time_id]),
max(flowCore::exprs(ff)[, time_id]) +
time_unit, by=time_unit),
plot=FALSE)
idcs <- findInterval(flowCore::exprs(ff)[subset_timeplot, time_id], h$breaks)
p_time <- ggplot() + theme_bw()
p_time <- p_time + theme(panel.grid=element_blank())
if (!is.null(blocks)){
p_time <- p_time + geom_rect(data=blocks,
mapping=aes(xmin=x_min,
xmax=x_max,
ymin=y_min,
ymax=y_max,
fill=fill_blocks),
alpha=0.4,
show.legend=TRUE) +
scale_fill_manual(name="",
values=c(IT="indianred1",
MAD="mediumpurple1",
`In consecutive bins`="plum1",
`Good Values`="white"),
guide=guide_legend(override.aes=
list(alpha=0.4)))
p_time <- p_time + theme(legend.key=element_rect(colour="snow4"))
}
p_time <- p_time +
geom_point(aes(x=h$mids, y=h$counts)) +
ggtitle(scores_time) +
xlab("Time") + ylab("Nr of cells per second") +
theme(plot.title=element_text(size=10))
return(p_time)
}
MakeContributions <- function(peaks, channel, marker){
contributions <- marker
contribution_MAD_channel <- max(peaks$ContributionMad
[grep(channel,
names(peaks$ContributionMad))])
if (exists("IT", peaks)){
contribution_IT_channel <- ifelse(length(grep(channel,
peaks$IT$split_column)) > 0, "+", "/")
} else{ contribution_IT_channel <- "/"}
if (contribution_MAD_channel > 0 || contribution_IT_channel != "/" ){
contributions <- paste0(contributions, "\n")
if (contribution_IT_channel != "/"){
contributions <- paste0(contributions, "IT: +")}
if (contribution_MAD_channel > 0 & contribution_IT_channel != "/"){
contributions <- paste0(contributions, " ")
}
if (contribution_MAD_channel > 0){
contributions <- paste0(contributions, "MAD: ",
contribution_MAD_channel, "%")
}
}
if (length(grep(channel, peaks$WeirdChannels$Increasing)) > 0) {
contributions <- paste0(contributions, "\n",
"WARNING: Increasing channel.")
} else if (length(grep(channel,
peaks$WeirdChannels$Decreasing))> 0){
contributions <- paste0(contributions, "\n",
"WARNING: Decreasing channel.")
}
return(contributions)
}
BuildManualPartPlot <- function(p, channel, manual_blocks){
if (length(grep("SC", channel)) == 0) {
manual_blocks$y_min <- minimum - 1
manual_blocks$y_max <- minimum - 1.25
} else {
manual_blocks$y_min <- minimum - 45000
manual_blocks$y_max <- minimum - 58000
}
p <- p + geom_rect(data=manual_blocks,
mapping=aes(xmin=x_min,
xmax=x_max,
ymin=y_min,
ymax=y_max),
fill=manual_blocks$fill_blocks,
alpha=1)
p <- p + theme(legend.position="none")
return(p)
}
BuildPeaksPlot <- function(p, peaks, channel, mid_breaks, contributions){
peak_frame <- peaks[[channel]]
if (is(peak_frame, "data.frame")) {
peak_frame$Bin <- as.numeric(mid_breaks)[as.numeric(
peak_frame$Bin)]
colours <- paste0("grey",
seq_len(20))[seq_len(length(
unique(peak_frame[,"Cluster"])))]
p <- p + geom_line(data=peak_frame, aes(x=Bin,
y=Peak,
color=Cluster),
size=1,
show.legend=FALSE) +
scale_color_manual(values=colours)
} else {
contributions <- paste0(contributions, " No peak was found.")
}
return(list("plot"=p, "contributions"=contributions))
}
BuildBackgroundQCPlot <- function(p, overview_blocks){
p <- p + geom_rect(data=overview_blocks,
mapping=aes(xmin=x_min,
xmax=x_max,
ymin=y_min,
ymax=y_max,
fill=fill_blocks),
alpha=0.4,
show.legend=TRUE) +
scale_fill_manual(name="",
values=c(IT="indianred1",
MAD="mediumpurple1",
`In consecutive bins`="plum1",
`Good Values`="white"),
guide=guide_legend(override.aes=
list(alpha=0.4)))
p <- p + theme(legend.key=element_rect(colour="snow4"))
return(p)
}
MakeMidBreaks <- function(peaks, ncells){
events_per_bin <- peaks$EventsPerBin
mid_breaks <- SplitWithOverlapMids(seq_len(ncells),
events_per_bin,
ceiling(events_per_bin/2))
m <- ncells%%events_per_bin
if(m !=0) {
mid_breaks=c(mid_breaks, ncells)
}
return(mid_breaks)
}
BuildChannelPlots <- function(channels, peaks, display_peaks, display_cells,
manual_cells, manual_blocks, ff, blocks,
plot_list){
if(is(peaks, "list")){
mid_breaks <- MakeMidBreaks(peaks, nrow(ff))
}
subset_signalplot <- sort(sample(seq_len(nrow(ff)), display_cells))
for (channel in channels) {
marker <- flowCore::getChannelMarker(ff, channel)$desc
if(is.na(marker))
marker <- channel
minimum <- min(flowCore::exprs(ff)[, channel])
maximum <- max(flowCore::exprs(ff)[, channel])
range <- abs(minimum) + abs(maximum)
if (is(display_peaks, "list") && display_peaks$Analysis != FALSE){
contributions <- MakeContributions(peaks, channel, marker)
} else{contributions <- marker}
flowdata <- data.frame(Cells=subset_signalplot,
channel=flowCore::exprs(ff)
[subset_signalplot, channel])
p <- ggplot() +
ylab("Value") +
xlab("Cells") +
theme_bw() +
theme(plot.title=element_text(hjust=0),
panel.grid=element_blank())
if (is(display_peaks, "list") && display_peaks$Analysis != FALSE) {
p <- BuildBackgroundQCPlot(p, blocks$Overview_blocks)
}
p <- p + geom_point(data=flowdata,
aes(x=Cells, y=channel),
size=0.3,
col="snow4")
if(is(peaks, "list")){
peaks_plot <- BuildPeaksPlot(p, peaks, channel,
mid_breaks, contributions)
p <- peaks_plot$plot
contributions <- peaks_plot$contributions
}
p <- p + ggtitle(contributions)
if (!is.null(manual_cells)) {
p <- BuildManualPartPlot(p, manual_blocks, channel)
}
p <- p + theme(plot.subtitle=element_text(size=10, color="black"))
plot_list[[channel]] <- p
}
return(plot_list)
}
CheckInputPlot <- function(ff, channels, output_directory,
display_cells, display_peaks, ...){
if(!is(ff, "flowFrame") | is.null(ff))
stop("ff should be a flowFrame.")
if(!is.numeric(channels) & !all(channels%in% colnames(flowCore::exprs(ff)))|
is.null(channels))
stop(StrMessage("Make sure that you use indices or the colnames in the
expression matrix in the flowframe to indicate which channels you
want to use."))
if(is.null(output_directory))
stop("There should be a path given to the output_directory parameter.")
# Make a new directory where all results will be stored
if(!is.null(output_directory)){
plot_directory <- file.path(output_directory, "PeacoQC_plots")
suppressWarnings(dir.create(plot_directory))
}
if (display_cells > nrow(ff)) {
message(StrMessage("There are less then the number of display cells
available. Setting the number of display cells to the number of
measurements."))
display_cells <- nrow(ff)
}
# If display_peaks == TRUE, the peaks should be calculated by using PeacoQC
if (is(display_peaks, "logical")){
if(display_peaks){
message("Running PeacoQC to determine peaks")
peaks <- PeacoQC(ff,
channels,
determine_good_cells=FALSE,
output_directory=NULL,
plot=FALSE,
save_fcs=FALSE,
report=FALSE,
...)
} else{peaks <- FALSE}
} else { peaks <- display_peaks}
return(list("display_cells"=display_cells,
"peaks"=peaks,
"plot_directory"=plot_directory))
}
MakeNicePlots <- function(display_peaks, plot_list, channels, plot_directory,
prefix, name){
n_channels <- length(channels)
n_row <- floor(sqrt(n_channels + 2))
n_col <- ceiling((n_channels + 2)/n_row)
g <- ggplotGrob(plot_list[[1]] + theme(legend.position="bottom"))$grobs
if (!(is(display_peaks, "logical")) && display_peaks$Analysis != FALSE){
legend <- g[[which(vapply(g,
function(x) x$name,
FUN.VALUE=character(1)) == "guide-box")]]
lheight <- sum(legend$height)
plots <- do.call(gridExtra::arrangeGrob,
c(lapply(plot_list, function(x)x +
theme(legend.position="none")),
nrow=n_row,
ncol=n_col))
final_plots <- gridExtra::arrangeGrob(
plots,
legend,
heights=grid::unit.c(grid::unit(1, "npc") - lheight, lheight))
} else {
plots <- do.call(gridExtra::arrangeGrob,
c(lapply(plot_list,
function(x) x),
nrow=n_row, ncol=n_col))
final_plots <- gridExtra::arrangeGrob(plots)}
ggsave(paste0(plot_directory, "/", prefix, name, ".png"),
final_plots, width=n_col * 5,
height=n_row * 3, limitsize=FALSE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.