Description Usage Arguments Details Value Author(s) See Also Examples
Calculate the principal component (PC) cutoff using a heuristic approach.
1 2 3 4 5 | plotPCElbow(object, ...)
## S4 method for signature 'seurat'
plotPCElbow(object, minSD = 1L, minPct = 0.025,
maxCumPct = 0.9, trans = c("identity", "sqrt"), plot = TRUE)
|
object |
Object. |
... |
Additional arguments. |
minSD |
Minimum standard deviation. |
minPct |
Minimum percent standard deviation. |
maxCumPct |
Maximum cumulative percent standard deviation. |
trans |
Name of the axis scale transformation to apply. See
|
plot |
Include plot. |
Automatically return the smallest number of PCs that match the minSD
,
minPct
, and maxCumPct
cutoffs.
Show graphical output of elbow plots.
Invisibly return numeric sequence vector of PCs to include for dimensionality reduction analysis.
Michael Steinbaugh
Seurat::PCElbowPlot()
.
Other Clustering Functions: cellTypesPerCluster
,
knownMarkersDetected
,
plotCellTypesPerCluster
,
plotFeatureTSNE
,
plotKnownMarkersDetected
,
plotTSNE
, sanitizeMarkers
,
topMarkers
1 2 | # seurat ====
plotPCElbow(seurat_small)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.