Description Usage Arguments Value Note Author(s) See Also Examples
t-SNE: t-distributed Stochastic Neighbor Embedding.
PCA: Principal Component Analysis.
UMAP: Uniform Manifold Approximation and Projection.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | plotTSNE(object, ...)
plotUMAP(object, ...)
## S4 method for signature 'SingleCellExperiment'
plotTSNE(object, interestingGroups = "ident",
color = NULL, pointsAsNumbers = FALSE,
pointSize = getOption("pointSize", 0.75),
pointAlpha = getOption("pointAlpha", 0.75), label = TRUE,
labelSize = getOption("labelSize", 6L), dark = FALSE, grid = FALSE,
legend = TRUE, aspectRatio = 1L, title = NULL)
## S4 method for signature 'seurat'
plotTSNE(object, interestingGroups = "ident",
color = NULL, pointsAsNumbers = FALSE,
pointSize = getOption("pointSize", 0.75),
pointAlpha = getOption("pointAlpha", 0.75), label = TRUE,
labelSize = getOption("labelSize", 6L), dark = FALSE, grid = FALSE,
legend = TRUE, aspectRatio = 1L, title = NULL)
## S4 method for signature 'SingleCellExperiment'
plotUMAP(object, interestingGroups = "ident",
color = NULL, pointsAsNumbers = FALSE,
pointSize = getOption("pointSize", 0.75),
pointAlpha = getOption("pointAlpha", 0.75), label = TRUE,
labelSize = getOption("labelSize", 6L), dark = FALSE, grid = FALSE,
legend = TRUE, aspectRatio = 1L, title = NULL)
## S4 method for signature 'seurat'
plotUMAP(object, interestingGroups = "ident",
color = NULL, pointsAsNumbers = FALSE,
pointSize = getOption("pointSize", 0.75),
pointAlpha = getOption("pointAlpha", 0.75), label = TRUE,
labelSize = getOption("labelSize", 6L), dark = FALSE, grid = FALSE,
legend = TRUE, aspectRatio = 1L, title = NULL)
## S4 method for signature 'SingleCellExperiment'
plotPCA(object, interestingGroups = "ident",
color = NULL, pointsAsNumbers = FALSE,
pointSize = getOption("pointSize", 0.75),
pointAlpha = getOption("pointAlpha", 0.75), label = TRUE,
labelSize = getOption("labelSize", 6L), dark = FALSE, grid = FALSE,
legend = TRUE, aspectRatio = 1L, title = NULL)
## S4 method for signature 'seurat'
plotPCA(object, interestingGroups = "ident",
color = NULL, pointsAsNumbers = FALSE,
pointSize = getOption("pointSize", 0.75),
pointAlpha = getOption("pointAlpha", 0.75), label = TRUE,
labelSize = getOption("labelSize", 6L), dark = FALSE, grid = FALSE,
legend = TRUE, aspectRatio = 1L, title = NULL)
|
object |
Object. |
... |
Additional arguments. |
interestingGroups |
Character vector of interesting groups. Must be
formatted in camel case and intersect with |
color |
Desired ggplot color scale. Must supply discrete values. When
set to |
pointsAsNumbers |
Plot the points as numbers ( |
pointSize |
Cell point size. |
pointAlpha |
Alpha transparency level. Useful when there many cells in the dataset, and some cells can be masked. |
label |
Overlay a cluster identitiy label on the plot. |
labelSize |
Size of the text label. |
dark |
Plot against a dark background using
|
grid |
Show major grid lines but hide axis lines. |
legend |
Include plot legend. |
aspectRatio |
Aspect ratio. |
title |
Plot title. |
ggplot
.
plotUMAP()
requires the Python dependency umap-learn
. We recommend
installing this with conda: conda install -c conda-forge umap-learn
.
Michael Steinbaugh, Rory Kirchner
Seurat::DimPlot()
.
Other Clustering Functions: cellTypesPerCluster
,
knownMarkersDetected
,
plotCellTypesPerCluster
,
plotFeatureTSNE
,
plotKnownMarkersDetected
,
plotPCElbow
, sanitizeMarkers
,
topMarkers
1 2 3 4 5 6 7 8 9 10 11 12 13 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.