R/gsvaParam.R

Defines functions get_sparse get_absRanking get_maxDiff get_tau get_kcdfNoneMinSampleSize get_kcdf gsvaParam

Documented in gsvaParam

#' @title The `gsvaParam` class
#'
#' @description Objects of class `gsvaParam` contain the parameters for running
#' the `GSVA` method.
#'
#' @details In addition to a number of parameters shared with all methods
#' implemented by package GSVA, `GSVA` takes six method-specific parameters.
#' All of these parameters are described in detail below.
#'
#' @param exprData The expression data set.  Must be one of the classes
#' supported by [`GsvaExprData-class`].  For a list of these classes, see its
#' help page using `help(GsvaExprData)`.
#'
#' @param geneSets The gene sets.  Must be one of the classes supported by
#' [`GsvaGeneSets-class`].  For a list of these classes, see its help page using
#' `help(GsvaGeneSets)`.
#' 
#' @param assay Character vector of length 1.  The name of the assay to use in
#' case `exprData` is a multi-assay container, otherwise ignored.  By default,
#' the first assay is used.
#' 
#' @param annotation An object of class [`GeneIdentifierType-class`] from
#' package `GSEABase` describing the gene identifiers used as the row names of
#' the expression data set.  See [`GeneIdentifierType`] for help on available
#' gene identifier types and how to construct them.  This
#' information can be used to map gene identifiers occurring in the gene sets.
#' 
#' If the default value `NULL` is provided, an attempt will be made to extract
#' the gene identifier type from the expression data set provided as `exprData`
#' (by calling [`gsvaAnnotation`] on it).  If still not successful, the
#' `NullIdentifier()` will be used as the gene identifier type, gene identifier
#' mapping will be disabled and gene identifiers used in expression data set and
#' gene sets can only be matched directly.
#' 
#' @param minSize Numeric vector of length 1.  Minimum size of the resulting gene
#' sets after gene identifier mapping. By default, the minimum size is 1.
#' 
#' @param maxSize Numeric vector of length 1.  Maximum size of the resulting gene
#' sets after gene identifier mapping. By default, the maximum size is `Inf`.
#' 
#' @param kcdf Character vector of length 1 denoting the kernel to use during
#' the non-parametric estimation of the empirical cumulative distribution
#' function (ECDF) of expression levels across samples. The value `kcdf="auto"`
#' will allow GSVA to automatically choose one of the possible values. The
#' value `kcdf="Gaussian"` is suitable when input expression values are
#' continuous, such as microarray fluorescent units in logarithmic scale,
#' RNA-seq log-CPMs, log-RPKMs, or log-TPMs. When input expression values are
#' integer counts, such as those derived from RNA-seq experiments, then this
#' argument should be set to `kcdf="Poisson"`. When we do not want to use a
#' kernel approach for the estimation of the ECDF, then we should set
#' `kcdf="none"`.
#'
#' @param kcdfNoneMinSampleSize Integer vector of length 1. When `kcdf="auto"`,
#' this parameter decides at what minimum sample size `kcdf="none"`, i.e., the
#' estimation of the empirical cumulative distribution function (ECDF) of
#' expression levels across samples is performed directly without using a
#' kernel. By default, this value is set to 200; see the `kcdf` slot.
#'
#' @param tau Numeric vector of length 1.  The exponent defining the weight of
#' the tail in the random walk performed by the `GSVA` (Hänzelmann et al.,
#' 2013) method.  The default value is 1 as described in the paper.
#'
#' @param maxDiff Logical vector of length 1 which offers two approaches to
#' calculate the enrichment statistic (ES) from the KS random walk statistic.
#' * `FALSE`: ES is calculated as the maximum distance of the random walk
#' from 0. This approach produces a distribution of enrichment scores that is
#' bimodal, but it can give large enrichment scores to gene sets whose genes
#' are not concordantly activated in one direction only.
#' * `TRUE` (the default): ES is calculated as the magnitude difference between
#' the largest positive and negative random walk deviations. This default value
#' gives larger enrichment scores to gene sets whose genes are concordantly
#' activated in one direction only.
#'
#' @param absRanking Logical vector of length 1 used only when `maxDiff=TRUE`.
#' When `absRanking=FALSE` (default) a modified Kuiper statistic is used to
#' calculate enrichment scores, taking the magnitude difference between the
#' largest positive and negative random walk deviations. When
#' `absRanking=TRUE` the original Kuiper statistic that sums the largest
#' positive and negative random walk deviations is used.
#' 
#' @param sparse Logical vector of length 1 used only when the input expression
#' data in `exprData` is stored in a sparse matrix (e.g., a `dgCMatrix` or a
#' `SingleCellExperiment` object storing the expression data in a `dgCMatrix`).
#' In such a case, when `sparse=TRUE` (default), a sparse version of the GSVA
#' algorithm will be applied. Otherwise, when `sparse=FALSE`, the classical
#' version of the GSVA algorithm will be used.
#'
#' @param checkNA Character vector of length 1 specifying whether the input
#' expression data should be checked for the presence of missing (`NA`) values.
#' This must be
#' one of the strings `"auto"` (default), `"yes"`, or `"no"`. The default value
#' `"auto"` means that the software will perform that check only when the input
#' expression data is provided as a base [`matrix`], an [`ExpressionSet`] or a
#' [`SummarizedExperiment`] object, while every other type of input expression
#' data container (e.g., [`SingleCellExperiment`], etc.) will not be checked.
#' If `checkNA="yes"`, then the input expression data will be checked for
#' missing values irrespective of the object class of the data container, and
#' if `checkNA="no"`, then that check will not be performed.
#'
#' @param use Character vector of length 1 specifying a policy for dealing with
#' missing values (`NA`s) in the input expression data argument `exprData`. It
#' only applies when either `checkNA="yes"`, or `checkNA="auto"` (see the
#' `checkNA` parameter. The argument value must be one of the strings
#' `"everything"` (default), `"all.obs"`, or `"na.rm"`. The policy of the
#' default value `"everything"` consists of propagating `NA`s so that the
#' resulting enrichment score will be `NA`, whenever one or more of its
#' contributing values is `NA`, giving a warning when that happens. When
#' `use="all.obs"`, the presence of `NA`s in the input expression data will
#' produce an error. Finally, when `use="na.rm"`, `NA` values in the input
#' expression data will be removed from calculations, giving a warning when that
#' happens, and giving an error if no values are left after removing the `NA`
#' values.
#'
#' @return A new [`gsvaParam-class`] object.
#'
#' @references Hänzelmann, S., Castelo, R. and Guinney, J. GSVA: Gene set
#' variation analysis for microarray and RNA-Seq data.
#' *BMC Bioinformatics*, 14:7, 2013.
#' [DOI](https://doi.org/10.1186/1471-2105-14-7)
#'
#' @examples
#' library(GSVA)
#' library(GSVAdata)
#'
#' data(leukemia)
#' data(c2BroadSets)
#' 
#' ## for simplicity, use only a subset of the sample data
#' ses <- leukemia_eset[1:1000, ]
#' gsc <- c2BroadSets[1:100]
#' gp1 <- gsvaParam(ses, gsc)
#' gp1
#'
#'
#' @importFrom methods new
#' @rdname gsvaParam-class
#' 
#' @export
gsvaParam <- function(exprData, geneSets,
                      assay=NA_character_, annotation=NULL,
                      minSize=1, maxSize=Inf,
                      kcdf=c("auto", "Gaussian", "Poisson", "none"),
                      kcdfNoneMinSampleSize=200, tau=1, maxDiff=TRUE,
                      absRanking=FALSE, sparse=TRUE,
                      checkNA=c("auto", "yes", "no"),
                      use=c("everything", "all.obs", "na.rm")) {
    kcdf <- match.arg(kcdf)
    kcdfNoneMinSampleSize <- as.integer(kcdfNoneMinSampleSize)
    checkNA <- match.arg(checkNA)
    use <- match.arg(use)

    an <- gsvaAssayNames(exprData)
    if((!is.na(assay)) && (!.isCharNonEmpty(an))) {
        msg <- sprintf(paste0("argument assay='%s' ignored since exprData has ",
                              "no assayNames()"), assay)
        cli_alert_info(msg)
    }
    if(is.na(assay) && .isCharNonEmpty(an))
        assay <- na.omit(an)[1]

    ## check for presence of valid row/feature names
    .check_rownames(exprData)

    xa <- gsvaAnnotation(exprData)
    if(is.null(xa)) {
        if(is.null(annotation)) {
            annotation <- NullIdentifier()
        }
    } else {
        if(is.null(annotation)) {
            annotation <- xa
        } else {
            msg <- sprintf(paste0("using argument annotation='%s' and ",
                                  "ignoring exprData annotation ('%s')"),
                           capture.output(annotation), capture.output(xa))
            cli_alert_info(msg)
        }
    }

    naparam <- .check_for_na_values(exprData=exprData, assay=assay,
                                    checkNA=checkNA, use=use)

    new("gsvaParam",
        exprData=exprData, geneSets=geneSets,
        assay=assay, annotation=annotation,
        minSize=minSize, maxSize=maxSize,
        kcdf=kcdf, kcdfNoneMinSampleSize=kcdfNoneMinSampleSize,
        tau=as.double(tau), maxDiff=maxDiff, absRanking=absRanking,
        sparse=sparse, checkNA=checkNA, didCheckNA=naparam$didCheckNA,
        anyNA=naparam$any_na, use=use)
}


## ----- validator -----

setValidity("gsvaParam", function(object) {
    inv <- NULL
    xd <- object@exprData
    dd <- dim(xd)
    an <- gsvaAssayNames(xd)
    oa <- object@assay
    
    if(dd[1] == 0) {
        inv <- c(inv, "@exprData has 0 rows")
    }
    if(dd[2] == 0) {
        inv <- c(inv, "@exprData has 0 columns")
    }
    if(length(object@geneSets) == 0) {
        inv <- c(inv, "@geneSets has length 0")
    }
    if(length(oa) != 1) {
        inv <- c(inv, "@assay must be of length 1")
    }
    if(.isCharLength1(oa) && .isCharNonEmpty(an) && (!(oa %in% an))) {
        inv <- c(inv, "@assay must be one of assayNames(@exprData)")
    }
    if(length(object@annotation) != 1) {
        inv <- c(inv, "@annotation must be of length 1")
    }
    if(!inherits(object@annotation, "GeneIdentifierType")) {
        inv <- c(inv, "@annotation must be a subclass of 'GeneIdentifierType'")
    }
    if(length(object@minSize) != 1) {
        inv <- c(inv, "@minSize must be of length 1")
    }
    if(object@minSize < 1) {
        inv <- c(inv, "@minSize must be at least 1 or greater")
    }
    if(length(object@maxSize) != 1) {
        inv <- c(inv, "@maxSize must be of length 1")
    }
    if(object@maxSize < object@minSize) {
        inv <- c(inv, "@maxSize must be at least @minSize or greater")
    }
    if(length(object@kcdfNoneMinSampleSize) != 1) {
        inv <- c(inv, "@kcdfNoneMinSampleSize must be of length 1")
    }
    if(object@kcdfNoneMinSampleSize < 0) {
        inv <- c(inv, "@kcdfNoneMinSampleSize must be a non-negative integer")
    }
    if(is.na(object@kcdfNoneMinSampleSize)) {
        inv <- c(inv, "@kcdfNoneMinSampleSize must not be NA")
    }
    if(length(object@tau) != 1) {
        inv <- c(inv, "@tau must be of length 1")
    }
    if(is.na(object@tau)) {
        inv <- c(inv, "@tau must not be NA")
    }
    if(length(object@maxDiff) != 1) {
        inv <- c(inv, "@maxDiff must be of length 1")
    }
    if(is.na(object@maxDiff)) {
        inv <- c(inv, "@maxDiff must not be NA")
    }
    if(length(object@absRanking) != 1) {
        inv <- c(inv, "@absRanking must be of length 1")
    }
    if(is.na(object@absRanking)) {
        inv <- c(inv, "@absRanking must not be NA")
    }
    if(length(object@sparse) != 1) {
        inv <- c(inv, "@sparse must be of length 1")
    }
    if(is.na(object@sparse)) {
        inv <- c(inv, "@sparse must not be NA")
    }
    if(!.isCharLength1(object@checkNA)) {
        inv <- c(inv, "@use must be a single character string")
    }
    if(length(object@didCheckNA) != 1) {
        inv <- c(inv, "@didCheckNA must be of length 1")
    }
    if(is.na(object@didCheckNA)) {
        inv <- c(inv, "@didCheckNA must not be NA")
    }
    if(length(object@anyNA) != 1) {
        inv <- c(inv, "@anyNA must be of length 1")
    }
    if(is.na(object@anyNA)) {
        inv <- c(inv, "@anyNA must not be NA")
    }
    if(!.isCharLength1(object@use)) {
        inv <- c(inv, "@use must be a single character string")
    }
    return(if(length(inv) == 0) TRUE else inv)
})


## ----- getters -----

#' @noRd
get_kcdf <- function(object) {
  stopifnot(inherits(object, "gsvaParam"))
  return(object@kcdf)
}

#' @noRd
get_kcdfNoneMinSampleSize <- function(object) {
  stopifnot(inherits(object, "gsvaParam"))
  return(object@kcdfNoneMinSampleSize)
}

#' @noRd
get_tau <- function(object) {
  stopifnot(inherits(object, "gsvaParam"))
  return(object@tau)
}

#' @noRd
get_maxDiff <- function(object) {
  stopifnot(inherits(object, "gsvaParam"))
  return(object@maxDiff)
}

#' @noRd
get_absRanking <- function(object) {
  stopifnot(inherits(object, "gsvaParam"))
  return(object@absRanking)
}

#' @noRd
get_sparse <- function(object) {
  stopifnot(inherits(object, "gsvaParam"))
  return(object@sparse)
}

## getters for 'checkNA', 'didCheckNA' and 'use' are
## currently in ssgsea.R

#' @param x An object of class [`gsvaParam-class`].
#'
#' @param recursive Not used with `x` being an object of
#' class [`gsvaParam-class`].
#'
#' @aliases anyNA,ssgseaParam-method
#' @rdname ssgseaParam-class
setMethod("anyNA", signature=c("gsvaParam"),
          function(x, recursive=FALSE)
            return(x@anyNA))


## ----- show -----

setMethod("show",
          signature=signature(object="gsvaParam"),
          function(object) {
              callNextMethod(object)
              cat("kcdf: ", get_kcdf(object), "\n",
                  "kcdfNoneMinSampleSize: ", get_kcdfNoneMinSampleSize(object), "\n",
                  "tau: ", get_tau(object), "\n",
                  "maxDiff: ", get_maxDiff(object), "\n",
                  "absRanking: ", get_absRanking(object), "\n",
                  sep="")
              if ("dgCMatrix" %in% class(unwrapData(get_exprData(object), get_assay(object))))
                  cat("sparse: ", get_sparse(object), "\n")
              cat("checkNA: ", get_checkNA(object), "\n", sep="")
              if (get_didCheckNA(object)) {
                  if (anyNA(object)) {
                      cat("missing data: yes\n",
                          "na_use: ", get_NAuse(object), "\n", sep="")
                  } else
                      cat("missing data: no\n")
              } else
                  cat("missing data: didn't check\n")
          })

## ----- setters for gsvaRanksParam -----

#' @param object For the replacement method, an object of class
#' [`gsvaRanksParam-class`].
#'
#' @param value For the replacement method, an object of the classes supported by
#' [`GsvaGeneSets-class`].
#'
#' @aliases geneSets<-
#' @aliases geneSets<-,gsvaRanksParam,GsvaGeneSets-method
#' @rdname gsvaParam-class
#' @exportMethod geneSets
setReplaceMethod("geneSets", signature=signature(object="gsvaRanksParam",
                                                 value="GsvaGeneSets"),
                 function(object, value) {
                   object@geneSets <- value
                   object
                 })
rcastelo/GSVA documentation built on Jan. 18, 2025, 6:36 a.m.