#' evaluateClustering
#'
#' Evaluates a clustering using 'true' labels. Entries with missing true labels
#' (i.e. NA) are excluded from calculations. If using `evaluteClustering` in a
#' custom pipeline, you might want to use the corresponding
#' `pipeComp:::.aggregateClusterEvaluation` aggregation function.
#'
#' @param x The clustering labels
#' @param tl The true labels
#'
#' @return A numeric vector of metrics (see the `pipeComp_scRNA` vignette for
#' details)
#' @importFrom aricode clustComp
#' @export
#'
#' @examples
#' # random data
#' dat <- data.frame(
#' cluster=rep(LETTERS[1:3], each=10),
#' x=c(rnorm(20, 0), rnorm(10, 1)),
#' y=c(rnorm(10, 1), rnorm(20, 0))
#' )
#' # clustering
#' dat$predicted <- kmeans(dist(dat[,-1]),3)$cluster
#' # evaluation
#' evaluateClustering(dat$predicted, dat$cluster)
evaluateClustering <- function(x, tl=NULL){
if(is.null(tl)) tl <- attr(x,"true.labels")
if(is.null(tl)) stop("True labels not found!")
if(!is.null(names(tl)) && !is.null(names(x))){
if(all(names(x) %in% names(tl))){
tl <- tl[names(x)]
}else{
warning("The names of the clustering vector does not match the names of",
" the true labels.")
}
}
if(any(is.na(tl))){
w <- which(!is.na(tl))
if(length(w)==0) stop("No non-NA true label!")
tl <- tl[w]
x <- x[w]
}
e <- match_evaluate_multiple(x, tl)
x <- as.character(x)
unmatched <- length(x)-sum(e$n_cells_matched)
c( unlist(e), unmatched.cells=unmatched,
unlist(aricode::clustComp(x,tl)) )
}
.compileExcludedCells <- function(before, after){
tt <- table(before$phenoid)
tt <- rbind( tt, table(after$phenoid)[names(tt)])
row.names(tt) <- c("before","after")
list( table=tt, excluded=setdiff(colnames(before), colnames(after)) )
}
#' @importFrom dplyr bind_rows
.aggregateExcludedCells <- function(res){
pi <- parsePipNames(names(res[[1]]))
res <- lapply(res, FUN=function(x){
y <- pi[rep(seq_len(nrow(pi)), each=ncol(x[[1]]$table)),,drop=FALSE]
row.names(y) <- NULL
y$subpopulation <- rep(colnames(x[[1]]$table), length(x))
y$N.before <- unlist(lapply(x, FUN=function(x) as.numeric(x$table[1,])))
y$N.lost <- unlist(lapply(x, FUN=function(x){
nl <- as.numeric(x$table[1,]-x$table[2,])
if(any(is.na(nl))){
w <- which(is.na(nl))
nl[w] <- as.numeric(x$table[1,w])
}
nl
}))
if(length(w <- which(is.na(y$N.lost)))>0) y$N.lost[w] <- y$N.before[w]
y$pc.lost <- round(100*y$N.lost/y$N.before,3)
y
})
res <- dplyr::bind_rows(res, .id="dataset")
res$dataset <- factor(res$dataset)
res
}
#' @importFrom matrixStats rowMins
#' @importFrom dplyr bind_cols bind_rows
.aggregateClusterEvaluation <- function(res){
pi <- row.names(res[[1]])
if(is.null(pi)) pi <- names(res[[1]])
pi <- parsePipNames(pi)
res <- lapply(res, FUN=function(a){
a <- lapply(a, cn=unique(unlist(lapply(a, names))), FUN=function(x,cn){
for(f in setdiff(cn,names(x))) x[[f]] <- NA_real_
x[cn]
})
## accomodate old and new dplyr behaviors:
x <- dplyr::bind_rows(a)
if(ncol(x)!=length(a[[1]])) x <- t(x)
##
x <- as.data.frame(x)
colnames(x) <- names(a[[1]])
for(f in c("pr","re","F1")){
w <- grep(paste0("^",f,"\\."),colnames(x))
x[[paste0("min_",f)]]<- matrixStats::rowMins(as.matrix(x[,w,drop=FALSE]))
}
y <- as.data.frame(x[,grep("pr\\.|re\\.|F1\\.",colnames(x),invert=TRUE)])
y$true.nbClusts <- length(grep("^pr\\.", colnames(x)))
y
})
pi <- pi[rep(seq_len(nrow(pi)), length(res)),,drop=FALSE]
res <- cbind(pi, dplyr::bind_rows(res, .id="dataset"))
res$dataset <- factor(res$dataset)
row.names(res) <- NULL
res
}
.getVE <- function(x, cl){
tryCatch({
summary(lm(x~cl))$r.squared
}, error=function(e){ print(e); return(NA) })
}
#' evaluateDimRed
#'
#' Gathers evaluation statistics on a reduced space using known cell labels.
#' If using `evaluteDimRed` in a custom pipeline, you will probably want to use
#' `pipeComp:::.aggregateDR` as the corresponding aggregation function.
#'
#' @param x The matrix of the reduced space, with cells as rows and components
#' as columns
#' @param clusters The vector indicating each cell's cluster.
#' @param n A numeric vector indiciating the number of top dimensions at which
#' to gather statistics (default `c(10,20,50)`). Will use all available
#' dimensions if a higher number is given.
#' @param covars A character vectors containing any additional covariates
#' (column names of `colData`) to track during evalutation. If missing, will
#' attempt to use default covariates. To disable, set `covars=c()`.
#'
#' @return A list with the following components:
#' * silhouettes: a matrix of the silhouette for each cell-cluster pair at each
#' value of `n`
#' * clust.avg.silwidth: a matrix of the cluster average width at each value of
#' `n`
#' * R2: the proportion of variance in each component (up to `max(n)`) that is
#' explained by the clusters (i.e. R-squared of a linear model).
#'
#' @importFrom stats dist lm
#' @importFrom cluster silhouette
#' @export
#' @examples
#' # random data
#' library(scater)
#' sce <- runPCA(logNormCounts(mockSCE(ngenes = 500)))
#' sce <- addPerCellQC(sce)
#' # random population labels
#' sce$cluster <- sample(LETTERS[1:3], ncol(sce), replace=TRUE)
#' res <- evaluateDimRed(sce, sce$cluster, covars=c("sum","detected"))
#' # average silhouette widths:
#' res$clust.avg.silwidth
#' # adjusted R2 of covariates:
#' res$covar.adjR2
evaluateDimRed <- function(x, clusters=NULL, n=c(10,20,50), covars){
if(missing(covars)) covars <- c("log10_total_features", "log10_total_counts",
"total_features")
if(is(x,"Seurat")){
if(is.character(covars)) covars <- x[[]][,covars]
if(is.null(clusters)) clusters <- x$phenoid
x <- Embeddings(x[["pca"]])
}else if(is(x, "SingleCellExperiment")){
if(is.character(covars))
covars <- as.data.frame(colData(x)[,
intersect(covars,colnames(colData(x)))])
if(is.null(clusters)) clusters <- x$phenoid
x <- reducedDim(x, "PCA")
}else{
if(is.null(clusters)) stop("`clusters` must be given!")
if(is.character(covars)) covars <- list()
}
if(is.data.frame(covars) && ncol(covars)==0) covars <- list()
clusters <- as.factor(clusters)
n <- unique(vapply(n, y=ncol(x), FUN=function(x,y) min(x,y), numeric(1)))
si <- lapply(n, FUN=function(dims){
cluster::silhouette(as.integer(clusters), dist(x[,seq_len(dims)]))
})
names(si) <- vapply(n, FUN=function(i){
if(i==ncol(x)) return(paste0("all_", i,"_dims"))
return(paste0("top_", i,"_dims"))
}, FUN.VALUE=character(1))
# summarize silhouette information
if(length(n)==1){
silhouettes <- si[[1]][,seq(1,3)]
}else{
silhouettes <- lapply(si,FUN=function(x) as.numeric(x[,3]))
silhouettes <- cbind(si[[1]][,seq(1,2)], do.call(cbind, silhouettes))
}
# cluster average silhouette width
csw <- do.call(rbind, lapply(si, FUN=function(x) summary(x)$clus.avg.widths))
colnames(csw) <- levels(clusters)
# variance in each component explained by clusters
R2 <- apply(x[,seq_len(max(n)),drop=FALSE], 2, cl=clusters, FUN=.getVE)
# correlation of each component with covariates
covar.cor <- vapply( covars, FUN=function(y) cor(x,y), numeric(ncol(x)) )
covar.adjR2 <- vapply(covars, FUN=function(co){
apply(x[,seq_len(min(5,ncol(x)))], 2, FUN=function(x){
tryCatch({
summary(lm(x~co+factor(clusters)))$adj.r.squared -
summary(lm(x~factor(clusters)))$adj.r.squared
}, error=function(e) NA)
})
}, numeric(min(5,ncol(x))))
# per-subpopuluation correlation of each component with covariates
ii <- split(seq_len(nrow(x)), clusters)
covar.cor2 <- lapply( covars, FUN=function(y){
z <- vapply(ii, FUN=function(i){
t(cor(x[i,],y[i]))
}, numeric(ncol(x)))
row.names(z) <- colnames(x)
z
})
# each cell's distance to the cluster median
cs <- split(row.names(x),clusters)
dists <- lapply(n, FUN=function(i){
x2 <- lapply(cs, FUN=function(y) x[y,seq_len(i),drop=FALSE])
lapply(x2, FUN=function(y){
sqrt(colSums((t(y)-matrixStats::colMedians(y))^2))
})
})
names(dists) <- paste0(n,"dims")
list( silhouettes=silhouettes,
clust.avg.silwidth=csw,
cellDistsToMedian=dists,
covar.cor=covar.cor,
covar.cor2=covar.cor2,
covar.adjR2=covar.adjR2,
R2=R2 )
}
#' @importFrom stats as.formula median
.aggregateDR <- function(res){
res <- lapply(res, FUN=function(x){
if("evaluation" %in% names(x)) x <- x$evaluation
if("dimreduction" %in% names(x)) x <- x$dimreduction
if("evaluation" %in% names(x)) x <- x$evaluation
x
})
pi <- parsePipNames(names(res[[1]]))
agfns <- list(minSilWidth=min, meanSilWidth=mean, medianSilWidth=median,
maxSilWidth=max)
allsi <- lapply(res, FUN=function(x){
subpops <- colnames(x[[1]]$clust.avg.silwidth)
x <- lapply(x,FUN=function(y) y$silhouettes)
dims <- table(unlist(lapply(x, FUN=function(x) colnames(x)[c(-1,-2)])))
if(!any(dims==length(x))){
warning("Silhouettes computed over incompatible dimensionalities.",
"Will use the first available one.")
dims <- c(1,1)
}
if(length(unique(dims))==1){
# single dimensionality
if(length(dims)>1){
x <- lapply(x, FUN=function(x){ colnames(x)[3] <- "selected"; x })
dims <- table(unlist(lapply(x, FUN=function(x) colnames(x)[c(-1,-2)])))
}
}
names(dims) <- dims <- intersect( unique(unlist(lapply(x, FUN=colnames))),
names(dims)[dims==length(x)] )
lapply(dims, FUN=function(dim){
sils <- dplyr::bind_rows(lapply(x, FUN=function(sil){
data.frame( subpopulation=subpops,
vapply(agfns, FUN.VALUE=numeric(length(unique(sil[,1]))),
FUN=function(agf) aggregate(sil[,dim],
by=list(cluster=sil[,1]),
FUN=agf)[,2] ),
stringsAsFactors=FALSE )
}))
sils<- cbind(pi[rep(seq_len(nrow(pi)),each=length(subpops)),,drop=FALSE],
sils)
row.names(sils) <- NULL
sils
})
})
dims <- unlist(lapply(allsi, names))
dims <- table(dims)[unique(dims)]
names(dims) <- dims <- names(dims)[dims==length(allsi)]
allsi <- lapply(dims, FUN=function(x){
x <- dplyr::bind_rows(lapply(allsi, FUN=function(y)
y[[x]]), .id = "dataset")
x$dataset <- factor(x$dataset)
x
})
R2 <- dplyr::bind_rows(lapply(res, FUN=function(x){
# find common PCs
x <- lapply(x, FUN=function(x) x$R2)
nn <- table(unlist(lapply(x, names)))
nn <- names(nn)[nn==length(x)]
x <- do.call(rbind, lapply(x, FUN=function(x) x[nn]))
cbind(pi, x)
}), .id="dataset")
if(is.null(tmp <- dim(res[[1]][[1]]$covar.cor)) || any(tmp==0)){
top5 <- covar.adjR2 <- covar <- NULL
}else{
covar <- dplyr::bind_rows(lapply(res, FUN=function(x){
a <- pi[rep(seq_len(nrow(pi)),each=ncol(x[[1]]$covar.cor)),,drop=FALSE]
a <- cbind(a, dplyr::bind_rows(lapply(x, FUN=function(x){
y <- t(x$covar.cor)
colnames(y) <- paste0("PC",seq_len(ncol(y)))
data.frame(covariate=colnames(x$covar.cor), y, stringsAsFactors=FALSE)
})))
row.names(a) <- NULL
a
}), .id="dataset")
top5 <- covar.cor2 <- covar.adjR2 <- NULL
if(!is.null(res[[1]][[1]]$covar.cor2)){
covar.cor2 <- dplyr::bind_rows(lapply(res, FUN=function(x){
x <- lapply(x, FUN=function(x){
i <- seq_len(min(nrow(x),5))
reshape2::melt(vapply(x$covar.cor2, FUN.VALUE=numeric(length(i)),
FUN=function(x) rowMeans(x[i,,drop=FALSE])),
value.name = "meanCor")
})
cbind( pi[rep(seq_len(nrow(pi)),vapply(x,nrow,integer(1))),,drop=FALSE],
dplyr::bind_rows(x) )
}), .id="dataset")
colnames(covar.cor2)[ncol(pi)+2:3] <- c("component","covariate")
w <- which( covar.cor2$component %in%
paste0(c("PC","PC_"), rep(seq(1,5),each=2)) )
top5 <- aggregate( covar.cor2$meanCor[w],
by=covar.cor2[,c("dataset","covariate", colnames(pi))],
FUN=function(x) mean(abs(x)) )
ff <- paste( paste( setdiff(colnames(top5), c("x","covariate")),
collapse="+"),
"~covariate" )
top5 <- reshape2::dcast( top5, as.formula(ff), value.var="x",
fun.aggregate=mean)
}
if(!is.null(res[[1]][[1]]$covar.adjR2)){
covar.adjR2 <- dplyr::bind_rows(lapply(res, FUN=function(x){
pi <- parsePipNames(names(x))
x <- do.call(rbind,
lapply(x, FUN=function(x) x$covar.adjR2[1,,drop=FALSE]))
row.names(x) <- NULL
cbind(pi, x)
}), .id="dataset")
}
}
list( silhouette=allsi, varExpl.subpops=R2, corr.covariate=covar,
meanAbsCorr.covariate2=top5, PC1.covar.adjR2=covar.adjR2 )
}
#' match_evaluate_multiple
#'
#' Function to match cluster labels with 'true' clusters using the Hungarian
#' algorithm, and return precision, recall, and F1 score. Written by Lukas
#' Weber in August 2016 as part of his
#' \href{https://github.com/lmweber/cytometry-clustering-comparison}{cytometry
#' clustering comparison}, with just slight modifications on initial handling
#' of input arguments.
#'
#' @param clus_algorithm cluster labels from algorithm
#' @param clus_truth true cluster labels. If NULL, will attempt to read them
#' from the names of `clus_algorithm` (expecting the format
#' `clusterName.cellName`)
#'
#' @return A list.
#'
#' @importFrom clue solve_LSAP
#' @export
#'
#' @examples
#' # random data
#' dat <- data.frame(
#' cluster=rep(LETTERS[1:3], each=10),
#' x=c(rnorm(20, 0), rnorm(10, 1)),
#' y=c(rnorm(10, 1), rnorm(20, 0))
#' )
#' # clustering
#' dat$predicted <- kmeans(dist(dat[,-1]),3)$cluster
#' # evaluation
#' match_evaluate_multiple(dat$predicted, dat$cluster)
match_evaluate_multiple <- function(clus_algorithm, clus_truth=NULL){
if(is.null(clus_truth)){
warning("Truth not given, trying to guess it from the names...")
clus_truth <- .getTrueLabelsFromNames(clus_algorithm)
}
if(length(clus_truth)>length(clus_algorithm)){
if(!is.null(names(clus_truth)) && !is.null(names(clus_algorithm))){
clus_truth <- clus_truth[names(clus_algorithm)]
}else{
stop("Could not match items from the two input vectors!")
}
}
if(!is.numeric(clus_truth)) clus_truth <- as.integer(as.factor(clus_truth))
if(!is.numeric(clus_algorithm))
clus_algorithm <- as.integer(as.factor(clus_algorithm))
# number of detected clusters
n_clus <- length(table(clus_algorithm))
# remove unassigned cells (NA's in clus_truth)
unassigned <- is.na(clus_truth)
clus_algorithm <- clus_algorithm[!unassigned]
clus_truth <- clus_truth[!unassigned]
if (length(clus_algorithm) != length(clus_truth))
warning("vector lengths are not equal")
tbl_algorithm <- table(clus_algorithm)
tbl_truth <- table(clus_truth)
# detected clusters in rows, true populations in columns
pr_mat <- re_mat <- F1_mat <-
matrix(NA, nrow = length(tbl_algorithm), ncol = length(tbl_truth))
for (i in seq_len(length(tbl_algorithm))) {
for (j in seq_len(length(tbl_truth))) {
i_int <- as.integer(names(tbl_algorithm))[i] # cluster from algorithm
j_int <- as.integer(names(tbl_truth))[j] # cluster from true labels
true_positives <- sum(clus_algorithm == i_int &
clus_truth == j_int, na.rm = TRUE)
detected <- sum(clus_algorithm == i_int, na.rm = TRUE)
truth <- sum(clus_truth == j_int, na.rm = TRUE)
# calculate precision, recall, and F1 score
precision_ij <- true_positives / detected
recall_ij <- true_positives / truth
F1_ij <- 2 * (precision_ij * recall_ij) / (precision_ij + recall_ij)
if (F1_ij == "NaN") F1_ij <- 0
pr_mat[i, j] <- precision_ij
re_mat[i, j] <- recall_ij
F1_mat[i, j] <- F1_ij
}
}
# put back cluster labels (note some row names may be missing due to removal
# of unassigned cells)
rownames(pr_mat) <- rownames(re_mat) <- rownames(F1_mat) <-
names(tbl_algorithm)
colnames(pr_mat) <- colnames(re_mat) <- colnames(F1_mat) <-
names(tbl_truth)
# match labels using Hungarian algorithm applied to matrix of F1 scores
# (Hungarian algorithm calculates an optimal one-to-one assignment)
# use transpose matrix (Hungarian algorithm assumes n_rows <= n_cols)
F1_mat_trans <- t(F1_mat)
if (nrow(F1_mat_trans) <= ncol(F1_mat_trans)) {
# if fewer (or equal no.) true populations than detected clusters, can
# match all true populations
labels_matched <- solve_LSAP(F1_mat_trans, maximum = TRUE)
# use row and column names since some labels may have been removed due to
# unassigned cells
labels_matched <-
as.numeric(colnames(F1_mat_trans)[as.numeric(labels_matched)])
names(labels_matched) <- rownames(F1_mat_trans)
} else {
# if fewer detected clusters than true populations, use transpose matrix
# and assign NAs for true populations without any matching clusters
labels_matched_flipped <- solve_LSAP(F1_mat, maximum = TRUE)
# use row and column names since some labels may have been removed due to
# unassigned cells
labels_matched_flipped <-
as.numeric(rownames(F1_mat_trans)[as.numeric(labels_matched_flipped)])
names(labels_matched_flipped) <- rownames(F1_mat)
labels_matched <- rep(NA, ncol(F1_mat))
names(labels_matched) <- rownames(F1_mat_trans)
labels_matched[as.character(labels_matched_flipped)] <-
as.numeric(names(labels_matched_flipped))
}
# precision, recall, F1 score, and number of cells for each matched cluster
pr <- re <- F1 <- n_cells_matched <- rep(NA, ncol(F1_mat))
names(pr) <- names(re) <- names(F1) <- names(n_cells_matched) <-
names(labels_matched)
for (i in seq_len(ncol(F1_mat))) {
# set to 0 if no matching cluster (too few detected clusters); use
# character names for row and column indices in case subsampling completely
# removes some clusters
im <- labels_matched[i]
pr[i] <- ifelse(is.na(im), 0, pr_mat[as.character(im), names(im)])
re[i] <- ifelse(is.na(im), 0, re_mat[as.character(im), names(im)])
F1[i] <- ifelse(is.na(im), 0, F1_mat[as.character(im), names(im)])
n_cells_matched[i] <- sum(clus_algorithm == labels_matched[i], na.rm=TRUE)
}
# means across populations
mean_pr <- mean(pr)
mean_re <- mean(re)
mean_F1 <- mean(F1)
return(list(n_clus = n_clus,
pr = pr,
re = re,
F1 = F1,
labels_matched = labels_matched,
n_cells_matched = n_cells_matched,
mean_pr = mean_pr,
mean_re = mean_re,
mean_F1 = mean_F1))
}
#' evaluateNorm
#'
#' @param x An object of class 'Seurat' or 'SingleCellExperiment' with
#' normalized data
#' @param clusters A vector of true cluster identities. If missing, will
#' attempt to fetch it from the `phenoid` colData.
#' @param covars Covariates to include, either as data.frame or as colData
#' columns of `x`
#'
#' @return a data.frame.
#' @export
#' @importFrom SummarizedExperiment colData
#' @importFrom matrixStats rowMedians
#' @importFrom Matrix rowMeans
#' @importFrom Seurat GetAssayData
#' @examples
#' # random data
#' library(scater)
#' sce <- logNormCounts(mockSCE(ngenes = 500))
#' sce <- addPerCellQC(sce)
#' # random population labels
#' sce$cluster <- sample(LETTERS[1:3], ncol(sce), replace=TRUE)
#' evaluateNorm(sce, sce$cluster, covars="detected")
evaluateNorm <- function(x, clusters=NULL, covars){
if(missing(covars)) covars <- c("log10_total_counts", "total_features")
if(is(x,"Seurat")){
if(is.character(covars) && length(covars)>0)
covars <- x[[]][,covars,drop=FALSE]
if(is.null(clusters)) clusters <- x$phenoid
meanCount <- Matrix::rowMeans(GetAssayData(x, assay="RNA", slot="counts"))
x <- GetAssayData(x, assay="RNA", slot="data")
}else if(is(x, "SingleCellExperiment")){
if(is.character(covars) && length(covars)>0)
covars <- as.data.frame(colData(x)[,covars,drop=FALSE])
if(is.null(clusters)) clusters <- x$phenoid
meanCount <- Matrix::rowMeans(counts(x))
x <- logcounts(x)
}
x <- as.matrix(x)
ve <- round(as.numeric(apply(x, 1, cl=clusters, FUN=.getVE)),2)
res <- data.frame( row.names=row.names(x), meanCount=meanCount,
varExpByCluster=ve )
if(!is.null(covars) && length(covars)>0){
ii <- split(seq_len(ncol(x)), clusters)
for( f in names(covars) ){
tmp <- vapply(ii, FUN.VALUE=numeric(nrow(x)), FUN=function(i){
cor(t(x[,i]), as.numeric(covars[[f]][i]))
})
res[[paste0(f,".medianCorr")]] <- round(matrixStats::rowMedians(tmp),2)
res[[paste0(f,".meanCorr")]] <- round(Matrix::rowMeans(tmp),2)
res[[paste0(f,".meanAbsCorr")]] <- round(Matrix::rowMeans(abs(tmp)),2)
}
}
return(res)
}
.aggregateNorm <- function(res){
res <- lapply(res, FUN=function(x){
if("evaluation" %in% names(x)) x <- x$evaluation
if("normalization" %in% names(x)) x <- x$normalization
x
})
res2 <- dplyr::bind_rows(lapply(res, FUN=function(x){
x <- t(vapply(x, FUN.VALUE=numeric(ncol(x[[1]])), FUN=function(x){
vapply(x, FUN=function(x) mean(abs(x), na.rm=TRUE), numeric(1))
}))
parsePipNames(as.data.frame(x))
}), .id="dataset")
cor2 <- dplyr::bind_rows(lapply(res, FUN=function(x){
parsePipNames(as.data.frame(t(vapply(x, FUN=function(x){
vapply( x[,-1], y=x[,1], method="spearman", use="pairwise",
FUN=cor, FUN.VALUE=numeric(1) )
}, FUN.VALUE=numeric(ncol(x[[1]])-1)))))
}), .id="dataset")
list( meanAbsCorr=res2, spearman.with.meanCount=cor2 )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.