PomaNorm | R Documentation |
PomaNorm
performs data normalization using various normalization methods.
PomaNorm(data, sample_norm = "none", method = "log_pareto")
data |
A |
sample_norm |
Character. Sample normalization method. Options include "none" (default), "sum", or "quantile". Quantile is often used when >100 samples. |
method |
Character. The normalization method to use. Options include "none" (no normalization), "auto_scaling" (autoscaling, i.e., Z-score normalization), "level_scaling" (level scaling), "log_scaling" (log scaling), "log" (log transformation), "vast_scaling" (vast scaling), "log_pareto" (log Pareto scaling), "min_max" (min-max), and "box_cox" (Box-Cox transformation). |
A SummarizedExperiment
object with normalized data.
Pol Castellano-Escuder
Van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC genomics, 7(1), 142.
# Output is a normalized SummarizedExperiment object
data <- POMA::st000284 # Example SummarizedExperiment object included in POMA
# No sample normalization
data %>%
PomaNorm(sample_norm = "none",
method = "log_pareto")
# Sum sample normalization
data %>%
PomaNorm(sample_norm = "sum",
method = "log_pareto")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.