PomaDESeq | R Documentation |
PomaDESeq
estimates variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution.
PomaDESeq(data, contrast = NULL, outcome = NULL, covs = NULL, adjust = "fdr")
data |
A |
contrast |
Character. Indicates the comparison. For example, "Group1-Group2" or "control-intervention". |
outcome |
Character. Indicates the name of the |
covs |
Character vector. Indicates the names of |
adjust |
Character. Indicates the multiple comparisons correction method. Options are: "fdr", "holm", "hochberg", "hommel", "bonferroni", "BH" and "BY". |
A tibble
with the results.
Pol Castellano-Escuder
Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550 (2014)
#library("airway")
#data("airway")
#se <- airway
#
## Classic DESeq2
#DESeq_results <- se %>%
# PomaDESeq(contrast = NULL,
# outcome = "dex",
# covs = NULL,
# adjust = "fdr")
#
#DESeq_results %>%
# dplyr::slice(1:10)
#
### Volcano plot
#DESeq_results %>%
# dplyr::select(feature, log2FC, pvalue) %>%
# PomaVolcano(labels = TRUE)
#
### Boxplot of top features
#se %>%
# PomaBoxplots(x = "features",
# outcome = "cell", # factorial variable to group by (e.g., treatment, sex, etc)
# feature_name = DESeq_results$feature[1:10])
#
### Heatmap of top features
#se[rownames(se) %in% DESeq_results$feature[1:10]] %>%
# PomaHeatmap(covs = c("cell", "dex"), # covariates to plot (e.g., treatment, sex, etc)
# feature_names = TRUE)
#
## DESeq2 with covariates
#DESeq_results <- se %>%
# PomaDESeq(contrast = NULL,
# outcome = "dex",
# covs = "cell",
# adjust = "fdr")
#
#DESeq_results %>%
# dplyr::slice(1:10)
#
### Volcano plot
#DESeq_results %>%
# dplyr::select(feature, log2FC, adj_pvalue) %>%
# PomaVolcano(labels = TRUE, y_label = "-log10 (Adjusted P-value)")
#
### Boxplot of top features
#se %>%
# PomaBoxplots(x = "features",
# outcome = "dex", # factorial variable to group by (e.g., treatment, sex, etc)
# feature_name = DESeq_results$feature[1:10])
#
### Heatmap of top features
#se[rownames(se) %in% DESeq_results$feature[1:10]] %>%
# PomaHeatmap(covs = c("cell", "dex"), # covariates to plot (e.g., treatment, sex, etc)
# feature_names = TRUE)
#
## DESeq2 with covariates and batch
#DESeq_results <- se %>%
# PomaDESeq(contrast = NULL,
# outcome = "dex",
# covs = c("batch", "cell"),
# adjust = "fdr")
#
#DESeq_results %>%
# dplyr::slice(1:10)
#
### Volcano plot
#DESeq_results %>%
# dplyr::select(feature, log2FC, adj_pvalue) %>%
# PomaVolcano(labels = TRUE, y_label = "-log10 (Adjusted P-value)")
#
### Boxplot of top features
#se %>%
# PomaBoxplots(x = "features",
# outcome = "cell", # factorial variable to group by (e.g., treatment, sex, etc)
# feature_name = DESeq_results$feature[1:10])
#
### Heatmap of top features
#se[rownames(se) %in% DESeq_results$feature[1:10]] %>%
# PomaHeatmap(covs = c("cell", "dex"), # covariates to plot (e.g., treatment, sex, etc)
# feature_names = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.