PomaLimma | R Documentation |
limma
PomaLimma
uses the classical limma
package to compute differential expression analysis.
PomaLimma(
data,
contrast = NULL,
outcome = NULL,
covs = NULL,
adjust = "fdr",
block = NULL,
weights = FALSE
)
data |
A |
contrast |
Character. Indicates the comparison. For example, "Group1-Group2" or "control-intervention". |
outcome |
Character. Indicates the name of the |
covs |
Character vector. Indicates the names of |
adjust |
Character. Indicates the multiple comparisons correction method. Options are: "fdr", "holm", "hochberg", "hommel", "bonferroni", "BH" and "BY". |
block |
Character. Specifies the name of the |
weights |
Logical. Indicates whether the limma model should estimate the relative quality weights for each group. See |
A tibble
with the results.
Pol Castellano-Escuder
Matthew E. Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, Gordon K. Smyth, limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, Volume 43, Issue 7, 20 April 2015, Page e47, https://doi.org/10.1093/nar/gkv007
data <- POMA::st000284 %>% # Example SummarizedExperiment object included in POMA
PomaNorm()
# Basic limma
limma_results <- data %>%
PomaLimma(contrast = "Healthy-CRC",
covs = NULL,
adjust = "fdr",
block = NULL)
limma_results %>%
dplyr::slice(1:10)
## Volcano plot
limma_results %>%
dplyr::select(feature, log2FC, pvalue) %>%
PomaVolcano(labels = TRUE)
## Boxplot of top features
data %>%
PomaBoxplots(x = "features",
outcome = "gender", # factorial variable to group by (e.g., treatment, sex, etc)
feature_name = limma_results$feature[1:10])
## Heatmap of top features
data[rownames(data) %in% limma_results$feature[1:10]] %>%
PomaHeatmap(covs = c("gender", "smoking_condition", "alcohol_consumption"), # covariates to plot (e.g., treatment, sex, etc)
feature_names = TRUE)
# Basic limma on alternative outcome
SummarizedExperiment::colData(data)$gender <- factor(ifelse(SummarizedExperiment::colData(data)$gender == 0, "male", "female"))
data %>%
PomaLimma(contrast = "male-female",
outcome = "gender",
covs = NULL,
adjust = "fdr",
block = NULL)
limma_results %>%
dplyr::slice(1:10)
## Volcano plot
limma_results %>%
dplyr::select(feature, log2FC, pvalue) %>%
PomaVolcano(labels = TRUE)
## Boxplot of top features
data %>%
PomaBoxplots(x = "features",
outcome = "gender", # factorial variable to group by (e.g., treatment, sex, etc)
feature_name = limma_results$feature[1:10])
## Heatmap of top features
data[rownames(data) %in% limma_results$feature[1:10]] %>%
PomaHeatmap(covs = c("gender", "smoking_condition", "alcohol_consumption"), # covariates to plot (e.g., treatment, sex, etc)
feature_names = TRUE)
# limma with one covariate
data %>%
PomaLimma(contrast = "Healthy-CRC",
covs = "gender",
adjust = "fdr",
block = NULL)
limma_results %>%
dplyr::slice(1:10)
## Volcano plot
limma_results %>%
dplyr::select(feature, log2FC, pvalue) %>%
PomaVolcano(labels = TRUE)
## Boxplot of top features
data %>%
PomaBoxplots(x = "features",
outcome = "gender", # factorial variable to group by (e.g., treatment, sex, etc)
feature_name = limma_results$feature[1:10])
## Heatmap of top features
data[rownames(data) %in% limma_results$feature[1:10]] %>%
PomaHeatmap(covs = c("gender", "smoking_condition", "alcohol_consumption"), # covariates to plot (e.g., treatment, sex, etc)
feature_names = TRUE)
# limma with two covariates
data %>%
PomaLimma(contrast = "Healthy-CRC",
covs = c("gender", "age_at_consent"),
adjust = "fdr",
block = NULL)
limma_results %>%
dplyr::slice(1:10)
## Volcano plot
limma_results %>%
dplyr::select(feature, log2FC, pvalue) %>%
PomaVolcano(labels = TRUE)
## Boxplot of top features
data %>%
PomaBoxplots(x = "features",
outcome = "gender", # factorial variable to group by (e.g., treatment, sex, etc)
feature_name = limma_results$feature[1:10])
## Heatmap of top features
data[rownames(data) %in% limma_results$feature[1:10]] %>%
PomaHeatmap(covs = c("gender", "smoking_condition", "alcohol_consumption"), # covariates to plot (e.g., treatment, sex, etc)
feature_names = TRUE)
# limma with replicates
# data %>%
# PomaLimma(contrast = "Healthy-CRC",
# covs = NULL,
# adjust = "fdr",
# block = "replicate")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.