View source: R/retrieve_easier_score.R
retrieve_easier_score | R Documentation |
Calculates easier score and if applicable, both weighted average and penalized score based on the combination of easier score and TMB.
retrieve_easier_score(
predictions_immune_response = NULL,
TMB_values = NULL,
easier_with_TMB = c("weighted_average", "penalized_score"),
weight_penalty,
verbose = TRUE
)
predictions_immune_response |
list containing the predictions
for each quantitative descriptor and for each task. This is the
output from |
TMB_values |
numeric vector containing patients' tumor mutational burden (TMB) values. |
easier_with_TMB |
character string indicating which approach should be used to integrate easier with TMB: "weighted_average" (default) and "penalized_score". |
weight_penalty |
integer value from 0 to 1, which is used to define the weight or penalty for combining easier and TMB scores based on a weighted average or penalized score, in order to derive a score of patient's likelihood of immune response. The default value is 0.5. |
verbose |
logical flag indicating whether to display messages about the process. |
A data.frame with samples in rows and easier scores in columns.
# using a SummarizedExperiment object
library(SummarizedExperiment)
# Using example exemplary dataset (Mariathasan et al., Nature, 2018)
# from easierData. Original processed data is available from
# IMvigor210CoreBiologies package.
library("easierData")
dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]
cancer_type <- metadata(dataset_mariathasan)[["cancertype"]]
# Select a subset of patients to reduce vignette building time.
pat_subset <- c(
"SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
"SAMba1a34b5a060", "SAM18a4dabbc557"
)
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]
# Computation of TF activity (Garcia-Alonso et al., Genome Res, 2019)
tf_activities <- compute_TF_activity(
RNA_tpm = RNA_tpm
)
# Predict patients' immune response
predictions <- predict_immune_response(
tfs = tf_activities,
cancer_type = cancer_type,
verbose = TRUE
)
# retrieve clinical response
patient_ICBresponse <- colData(dataset_mariathasan)[["BOR"]]
names(patient_ICBresponse) <- colData(dataset_mariathasan)[["pat_id"]]
# retrieve TMB
TMB <- colData(dataset_mariathasan)[["TMB"]]
names(TMB) <- colData(dataset_mariathasan)[["pat_id"]]
patient_ICBresponse <- patient_ICBresponse[names(patient_ICBresponse) %in% pat_subset]
TMB <- TMB[names(TMB) %in% pat_subset]
easier_derived_scores <- retrieve_easier_score(
predictions_immune_response = predictions,
TMB_values = TMB,
easier_with_TMB = c("weighted_average", "penalized_score"),
weight_penalty = 0.5
)
RNA_counts <- assays(dataset_mariathasan)[["counts"]]
RNA_counts <- RNA_counts[, colnames(RNA_counts) %in% pat_subset]
# Computation of cell fractions (Finotello et al., Genome Med, 2019)
cell_fractions <- compute_cell_fractions(RNA_tpm = RNA_tpm)
# Computation of pathway scores (Holland et al., BBAGRM, 2019;
# Schubert et al., Nat Commun, 2018)
pathway_activities <- compute_pathway_activity(
RNA_counts = RNA_counts,
remove_sig_genes_immune_response = TRUE
)
# Computation of ligand-receptor pair weights
lrpair_weights <- compute_LR_pairs(
RNA_tpm = RNA_tpm,
cancer_type = "pancan"
)
# Computation of cell-cell interaction scores
ccpair_scores <- compute_CC_pairs(
lrpairs = lrpair_weights,
cancer_type = "pancan"
)
# Predict patients' immune response
predictions <- predict_immune_response(
pathways = pathway_activities,
immunecells = cell_fractions,
tfs = tf_activities,
lrpairs = lrpair_weights,
ccpairs = ccpair_scores,
cancer_type = cancer_type,
verbose = TRUE
)
easier_derived_scores <- retrieve_easier_score(
predictions_immune_response = predictions,
TMB_values = TMB,
easier_with_TMB = c("weighted_average", "penalized_score"),
weight_penalty = 0.5
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.