View source: R/predict_with_rmtlr.R
predict_with_rmtlr | R Documentation |
Obtains predictions of immune response for individual quantitative descriptors by using a cancer-specific model learned with Regularized Multi-Task Linear Regression algorithm (RMTLR).
predict_with_rmtlr(
view_name,
view_info,
view_data,
opt_model_cancer_view_spec,
opt_xtrain_stats_cancer_view_spec,
verbose = TRUE
)
view_name |
character string containing the name of the input view. |
view_info |
character string informing about the family of the input data. |
view_data |
list containing the data for each input view. |
opt_model_cancer_view_spec |
cancer-view-specific model
feature parameters learned during training. These are available
from easierData package through |
opt_xtrain_stats_cancer_view_spec |
cancer-view-specific
features mean and standard deviation of the training set. These
are available from easierData package through
|
verbose |
logical flag indicating whether to display messages about the process. |
A list of predictions, one for each task, in a matrix format (rows = samples; columns = [runs).
# using a SummarizedExperiment object
library(SummarizedExperiment)
# Using example exemplary dataset (Mariathasan et al., Nature, 2018)
# from easierData. Original processed data is available from
# IMvigor210CoreBiologies package.
library("easierData")
dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]
cancer_type <- metadata(dataset_mariathasan)[["cancertype"]]
# Select a subset of patients to reduce vignette building time.
pat_subset <- c(
"SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
"SAMba1a34b5a060", "SAM18a4dabbc557"
)
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]
# Computation of TF activity (Garcia-Alonso et al., Genome Res, 2019)
tf_activities <- compute_TF_activity(
RNA_tpm = RNA_tpm
)
view_name <- "tfs"
view_info <- c(tfs = "gaussian")
view_data <- list(tfs = as.data.frame(tf_activities))
# Retrieve internal data
opt_models <- suppressMessages(easierData::get_opt_models())
opt_xtrain_stats <- suppressMessages(easierData::get_opt_xtrain_stats())
opt_model_cancer_view_spec <- lapply(view_name, function(X) {
return(opt_models[[cancer_type]][[X]])
})
names(opt_model_cancer_view_spec) <- view_name
opt_xtrain_stats_cancer_view_spec <- lapply(view_name, function(X) {
return(opt_xtrain_stats[[cancer_type]][[X]])
})
names(opt_xtrain_stats_cancer_view_spec) <- view_name
# Predict using rmtlr
prediction_view <- predict_with_rmtlr(
view_name = view_name,
view_info = view_info,
view_data = view_data,
opt_model_cancer_view_spec = opt_model_cancer_view_spec,
opt_xtrain_stats_cancer_view_spec = opt_xtrain_stats_cancer_view_spec
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.