View source: R/explore_biomarkers.R
explore_biomarkers | R Documentation |
Provides a good overview of the computed features
(biomarkers) including the corresponding weights from the
trained model. If patient_response
is provided,
this function shows statistically significant biomarkers
between responders (R) and non-responders (NR) patients.
explore_biomarkers(
pathways = NULL,
immunecells = NULL,
tfs = NULL,
lrpairs = NULL,
ccpairs = NULL,
cancer_type,
patient_label = NULL,
verbose = TRUE
)
pathways |
numeric matrix with pathways activity
(rows = samples; columns = pathways). This is the
output from |
immunecells |
numeric matrix with immune cell quantification
(rows = samples; columns = cell types). This is the
output from |
tfs |
numeric matrix with transcription factors activity
(rows = samples; columns = transcription factors). This is the
output from |
lrpairs |
numeric matrix with ligand-receptor weights
(rows = samples; columns = ligand-receptor pairs). This is the
output from |
ccpairs |
numeric matrix with cell-cell scores
(rows = samples; columns = cell-cell pairs). This is the
output from |
cancer_type |
character string indicating which cancer-specific model should be used to compute the predictions. This should be available from the cancer-specific models. The following cancer types have a corresponding model available: "BLCA", "BRCA", "CESC", "CRC", "GBM", "HNSC", "KIRC", "KIRP", "LIHC", "LUAD", "LUSC", "NSCLC", "OV", "PAAD", "PRAD", "SKCM", "STAD", "THCA" and "UCEC". |
patient_label |
character vector with two factor levels, e.g. NR (Non-responders) vs R (Responders), pre- vs on- treatment. |
verbose |
logical flag indicating whether to display messages about the process. |
A combined plot for each type of quantitative descriptors, showing the original distribution of the features and the importance of these features for the trained models #'
Volcano plot displaying relevant biomarkers differentiating responders vs non-responders patients.
# using a SummarizedExperiment object
library(SummarizedExperiment)
# Using example exemplary dataset (Mariathasan et al., Nature, 2018)
# from easierData. Original processed data is available from
# IMvigor210CoreBiologies package.
library("easierData")
dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]
cancer_type <- metadata(dataset_mariathasan)[["cancertype"]]
# Select a subset of patients to reduce vignette building time.
pat_subset <- c(
"SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
"SAMba1a34b5a060", "SAM18a4dabbc557"
)
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]
# Computation of TF activity
tf_activity <- compute_TF_activity(
RNA_tpm = RNA_tpm
)
# retrieve clinical response
patient_ICBresponse <- colData(dataset_mariathasan)[["BOR"]]
names(patient_ICBresponse) <- colData(dataset_mariathasan)[["pat_id"]]
patient_ICBresponse <- patient_ICBresponse[names(patient_ICBresponse) %in% pat_subset]
# Investigate possible biomarkers
output_biomarkers <- explore_biomarkers(
tfs = tf_activity,
cancer_type = cancer_type,
patient_label = patient_ICBresponse
)
RNA_counts <- assays(dataset_mariathasan)[["counts"]]
RNA_counts <- RNA_counts[, colnames(RNA_counts) %in% pat_subset]
# Computation of cell fractions
cell_fractions <- compute_cell_fractions(RNA_tpm = RNA_tpm)
# Computation of pathway scores
pathway_activity <- compute_pathway_activity(
RNA_counts = RNA_counts,
remove_sig_genes_immune_response = TRUE
)
# Computation of ligand-receptor pair weights
lrpair_weights <- compute_LR_pairs(
RNA_tpm = RNA_tpm,
cancer_type = "pancan"
)
# Computation of cell-cell interaction scores
ccpair_scores <- compute_CC_pairs(
lrpairs = lrpair_weights,
cancer_type = "pancan"
)
# Investigate possible biomarkers
output_biomarkers <- explore_biomarkers(
pathways = pathway_activity,
immunecells = cell_fractions,
lrpairs = lrpair_weights,
tfs = tf_activity,
ccpairs = ccpair_scores,
cancer_type = cancer_type,
patient_label = patient_ICBresponse
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.