# rugplotDonorTargetTest.R
# from CSReport_v1.4.3.R
#' rugplotDonorTargetTest
#'
#' This function is called by CellScoreReport to make a rugplot showing the
#' CellScore of all test samples, in relation to the standards. Donor and target
#' individual CellScore values are plotted in one horizontal lane, then test
#' CellScore values are are in another horizontal lane. Z-score cutoffs based
#' on the target standards are shown as dashed vertical lines.
#' @param test.data a data.frame of CellScore values as calculated by
#' CellScore(), for only plot group of test samples.
#' @param cellscore a data.frame of CellScore values as calculated by
#' CellScore().
#' @return This function outputs the plot on the active graphical device
#' and returns invisibly NULL.
#' @keywords cellscore target rugplot test sample
#' @export
#' @seealso \code{\link[CellScore]{CellScore}} for details on CellScore.
#' @importFrom graphics abline axis legend par plot points rect rug text
#' @importFrom grDevices densCols
#' @importFrom RColorBrewer brewer.pal
#' @importFrom stats density sd
#' @examples
#' \dontrun{
#' ## Load the expression set for the standard cell types
#' library(Biobase)
#' library(hgu133plus2CellScore) # eset.std
#'
#' ## Locate the external data files in the CellScore package
#' rdata.path <- system.file("extdata", "eset48.RData", package = "CellScore")
#' tsvdata.path <- system.file("extdata", "cell_change_test.tsv",
#' package = "CellScore")
#'
#' if (file.exists(rdata.path) && file.exists(tsvdata.path)) {
#'
#' ## Load the expression set with normalized expressions of 48 test samples
#' load(rdata.path)
#'
#' ## Import the cell change info for the loaded test samples
#' cell.change <- read.delim(file= tsvdata.path, sep="\t",
#' header=TRUE, stringsAsFactors=FALSE)
#'
#' ## Combine the standards and the test data
#' eset <- combine(eset.std, eset48)
#'
#' ## Generate the on/off scores for the combined data
#' individ.OnOff <- OnOff(eset, cell.change, out.put="individual")
#'
#' ## Generate cosine similarity for the combined data
#' ## NOTE: May take 1-2 minutes on the full eset object
#' cs <- CosineSimScore(eset, cell.change, iqr.cutoff=0.05)
#'
#' ## Generate the CellScore values for all samples
#' cellscore <- CellScore(data=eset, transitions=cell.change, scores.onoff=individ.OnOff$scores,
#' scores.cosine=cs$cosine.samples)
#' ## Get the CellScore fvalues rom valid transitions defined by cell.change
#' ## table
#' plot.data <- extractTransitions(cellscore, cell.change)
#'
#' ## Define a plot group variable
#' plot.data$plot_group <- paste(plot.data$experiment_id,
#' plot.data$cxkey.subcelltype, sep="_")
#' ## Sort the scores 1) by target 2) by donor 3) by study
#' plot.data.ordered <- plot.data[order(plot.data$target,
#' plot.data$donor_tissue,
#' plot.data$experiment_id), ]
#' ## How many plot_groups are there?
#' table(plot.data$plot_group)
#'
#' ## pick one plot_group to plot
#' group <- unique(plot.data$plot_group)[4]
#'
#' ## Select scores for only one plot group
#' test.data <- plot.data.ordered[plot.data.ordered$plot_group %in% group, ]
#'
#' ## Plot
#' rugplotDonorTargetTest(test.data, cellscore)
#'
#' }
#' }
rugplotDonorTargetTest <- function(test.data, cellscore) {
############################################################################
## PART 0. Check function arguments
############################################################################
fun.main <- deparse(match.call()[[1]])
.stopIfNotDataFrame(test.data, 'test.data', fun.main)
.stopIfNotDataFrame(cellscore, 'cellscore', fun.main)
############################################################################
## PART I. Data preparation
############################################################################
## Get the standard data for this transition and calculate Z-scores
celltype <- list(donor=test.data$start[1],
target=test.data$target[1],
test=test.data$sub_cell_type1[1])
data.list <- zscore.list <- list(target=NULL, donor=NULL, test=NULL)
for (group in names(data.list)) {
if (group == "test"){
data.list[[group]] <- test.data$CellScore
}else{
sel.trans <- cellscore$start == celltype$donor &
cellscore$target == celltype$target
sel.group <- cellscore$general_cell_type == celltype[[group]]
data.list[[group]] <- cellscore$CellScore[sel.trans & sel.group]
}
zscore.list[[group]] <- sapply(data.list[[group]],
function(x) .zscore(data.list$target, x))
}
############################################################################
## PART II. Plot
############################################################################
## A. Density plot of CellScore
.doDensityPlot(data.list, celltype)
## B. Another rug plot representation: just plot lines [BETTER]
title <- paste0(test.data$experiment_id[1], ": ", "Transition from ",
celltype$donor," -> ", celltype$target)
.doRugPlot(data.list, zscore.list, celltype, title)
invisible()
}
## doDensityPlot
##
## Local function that plots density curves of CellScore values (data.list)
## by groups defined in celltype.
.doDensityPlot <- function(data.list, celltype){
dens.list <- lapply(data.list, density)
plot(dens.list$target, type="n",
main=paste0("CellScores: ","Transition from ",
celltype$donor," -> ", celltype$target),
ylim=c(0, max(dens.list$target$y)),
xlim=c(min(dens.list$donor$x), max(dens.list$target$x)))
## Set colours and add coloured points
col.list <- .getMainColours("all", FALSE)
lapply(names(dens.list),
function(group){
## Plot density if there is more than one value
if (length(data.list[[group]]) > 1) {
points(dens.list[[group]], col=col.list[[group]], type="l")
}
})
## Add rug of test scores
rug(data.list$test, col=col.list$test)
## Add legend
leg.vector <- sapply(names(col.list),
function(x){
paste0(celltype[[x]], " (",
length(data.list[[x]]),")")
})
legend("top", fill=unlist(col.list), legend=leg.vector)
}
## dorugPlot
##
## Local function that displays rugplot of CellScore values (data.list)
## by groups defined in celltype. It actually plots the Z-score of CellScore
## values (zscore.list). Title and should be provided.
.doRugPlot <- function(data.list, zscore.list, celltype, title){
xlim <- c(min(unlist(data.list[c("target","test")])),
max(unlist(data.list[c("target","test")])))
ylim <- c(0, 3.5)
par(mar=c(5, 5, 4, 5) + 0.1)
## Set up plot area
plot(zscore.list$test, zscore.list$test,
xlim=xlim,
ylim=ylim,
type="n",
ylab="",
axes=FALSE,
frame.plot=TRUE,
main="CellScores of Target and Test Cell Type",
yaxp=c(1, rep(length(data.list), 2)),
xlab="CellScore"
)
axis(side=1, labels=TRUE)
axis(side=2, at=c(1:2), labels=c(celltype$test, "Standards"), las=2,
cex.axis=0.9)
## Set the plot region to grey
rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],
col = "grey90")
## Standards in one line, use density colouring
## Set colours and add coloured points
colramp.list <- .getMainColours("all", TRUE)
lapply(names(data.list),
function(group){
col.group <- colramp.list[[group]]
y.value <- 1
if (group != "test"){
col.group <- densCols(data.list[[group]], colramp=col.group)
y.value <- 2
}
points(data.list[[group]],
rep(y.value, length(data.list[[group]])),
col=col.group,
pch="|",
cex=1.8)
})
## Labels range of z-scores for the standard
target.mean <- mean(data.list$target)
target.std <- sd(data.list$target)
abline(v=target.mean, lty=2, lwd=2, col="darkgreen")
## How many std to plot?
zscore.std.plot <- abs(min(unlist(zscore.list[c("target","test")])))
for (j in seq_len(zscore.std.plot)){
list.sd = list(pos=target.mean + j*target.std,
neg=target.mean - j*target.std)
for (element in list.sd){
abline(v=element, lty=2, col="darkgreen")
# plot points as bg for text
points(element, rep(0,length(element)), pch=16, cex=1, col="white")
# plot text
text(element, rep(0, length(element)), labels=j, cex=0.7,
col="royalblue")
}
}
## Add legend
col.list <- .getMainColours("all", FALSE)
leg.vector <- sapply(names(col.list),
function(x){
paste0(celltype[[x]], " (",
length(data.list[[x]]),")")
})
legend("topleft", fill=unlist(col.list[c("target", "test")]),
border=FALSE, bg="grey90", pt.cex=1.5, cex=1.1,
legend=leg.vector[c("target", "test")],
title=title)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.