#' @rdname DESeqDataSet
#' @export
setClass("DESeqDataSet",
contains = "SummarizedExperiment",
representation = representation(
design = "formula",
dispersionFunction = "function"))
setValidity( "DESeqDataSet", function( object ) {
if (! ("counts" %in% assayNames(object)) )
return( "the assays slot must contain a matrix named 'counts'" )
if ( !is.numeric( counts(object) ) )
return( "the count data is not numeric" )
if ( any( is.na( counts(object) ) ) )
return( "NA values are not allowed in the count matrix" )
if ( !is.integer( counts(object) ) )
return( "the count data is not in integer mode" )
if ( any( counts(object) < 0 ) )
return( "the count data contains negative values" )
design <- design(object)
designVars <- all.vars(design)
if (!all(designVars %in% names(colData(object)))) {
return("all variables in design formula must be columns in colData")
}
designVarsClass <- sapply(designVars, function(v) class(colData(object)[[v]]))
if (any(designVarsClass == "character")) {
return("variables in design formula are character vectors.
convert these columns of colData(object) to factors before including in the design formula")
}
designFactors <- designVars[designVarsClass == "factor"]
if (any(sapply(designFactors,function(v) any(table(colData(object)[[v]]) == 0)))) {
return("
factors in design formula must have samples for each level.
this error can arise when subsetting a DESeqDataSet, in which
all the samples for one or more levels of a factor in the design were removed.
if this was intentional, use droplevels() to remove these levels, e.g.:
dds$condition <- droplevels(dds$condition)
")
}
if (any(sapply(designFactors,function(v) any(duplicated(make.names(levels(colData(object)[[v]]))))))) {
return("
factors in the design formula have non-unique level names after make.names() is applied.
make.names() is used during the analysis to turn factor levels into safe column names.
please only use letters and numbers for levels of factors in the design")
}
# else...
TRUE
} )
#' DESeqDataSet object and constructors
#'
#' The \code{DESeqDataSet} is a subclass of \code{SummarizedExperiment},
#' used to store the input values, intermediate calculations and results of an
#' analysis of differential expression. The \code{DESeqDataSet} class
#' enforces non-negative integer values in the "counts" matrix stored as
#' the first element in the assay list.
#' In addition, a formula which specifies the design of the experiment must be provided.
#' The constructor functions create a DESeqDataSet object
#' from various types of input:
#' a SummarizedExperiment, a matrix, or count files generated by
#' the python package HTSeq. See the vignette for examples of construction
#' from all three input types.
#'
#' @param se a \code{SummarizedExperiment} with at least one column in colData,
#' and the counts as the first element in the assays list, which will be renamed
#' "counts". A \code{SummarizedExperiment} object can be generated by the
#' function \code{summarizeOverlaps} in the GenomicRanges package.
#' @param design a \code{formula} which expresses how the counts for each gene
#' depend on the variables in \code{colData}. Many R \code{formula} are valid,
#' including designs with multiple variables, e.g., \code{~ group + condition},
#' and designs with interactions, e.g., \code{~ genotype + treatment + genotype:treatment}.
#' See \code{\link{results}} for a variety of designs and how to extract results tables.
#' By default, the functions in this package will use
#' the last variable in the formula for building results tables and plotting.
#' @param countData for matrix input: a matrix of non-negative integers
#' @param colData for matrix input: a \code{DataFrame} or \code{data.frame} with at least a single column.
#' Rows of colData correspond to columns of countData
#' @param tidy for matrix input: whether the first column of countData is the rownames for the count matrix
#' @param sampleTable for htseq-count: a \code{data.frame} with three or more columns. Each row
#' describes one sample. The first column is the sample name, the second column
#' the file name of the count file generated by htseq-count, and the remaining
#' columns are sample metadata which will be stored in \code{colData}
#' @param directory for htseq-count: the directory relative to which the filenames are specified
#' @param ignoreRank use of this argument is reserved for DEXSeq developers only.
#' Users will immediately encounter an error upon trying to estimate dispersion
#' using a design with a model matrix which is not full rank.
#' @param ... arguments provided to \code{SummarizedExperiment} including rowRanges and exptData. Note that
#' for Bioconductor 3.1, rowRanges must be a GRanges or GRangesList, with potential metadata columns
#' as a DataFrame accessed and stored with \code{mcols}. If a user wants to store metadata columns
#' about the rows of the countData, but does not have GRanges or GRangesList information,
#' first construct the DESeqDataSet without rowRanges and then add the DataFrame with \code{mcols(dds)}.
#'
#' @return A DESeqDataSet object.
#'
#' @aliases DESeqDataSet DESeqDataSet-class DESeqDataSetFromMatrix DESeqDataSetFromHTSeqCount
#'
#' @references See \url{http://www-huber.embl.de/users/anders/HTSeq} for htseq-count
#'
#' @docType class
#'
#' @examples
#'
#' countData <- matrix(1:100,ncol=4)
#' condition <- factor(c("A","A","B","B"))
#' dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), ~ condition)
#'
#' @rdname DESeqDataSet
#' @export
DESeqDataSet <- function(se, design, ignoreRank=FALSE) {
if (is.null(assayNames(se)) || assayNames(se)[1] != "counts") {
message("renaming the first element in assays to 'counts'")
assayNames(se)[1] <- "counts"
}
# before validity check, try to convert assay to integer mode
if (any(is.na(assay(se))))
stop("NA values are not allowed in the count matrix")
if (any(assay(se) < 0)) {
stop("some values in assay are negative")
}
if (!is.integer(assay(se))) {
if (any(round(assay(se)) != assay(se))) {
stop("some values in assay are not integers")
}
message("converting counts to integer mode")
mode(assay(se)) <- "integer"
}
if (all(assay(se) == 0)) {
message("all samples have 0 counts for all genes. check the counting script.")
}
if (all(rowSums(assay(se) == assay(se)[,1]) == ncol(se))) {
message("all genes have equal values for all samples. will not be able to perform differential analysis")
}
if (any(duplicated(rownames(se)))) {
warning(sum(duplicated(rownames(se)))," duplicate rownames were renamed by adding numbers")
rnms <- rownames(se)
dups <- unique(rnms[duplicated(rnms)])
for (rn in dups) {
idx <- which(rnms == rn)
rnms[idx[-1]] <- paste(rnms[idx[-1]], c(seq_len(length(idx) - 1)), sep=".")
}
rownames(se) <- rnms
}
designVars <- all.vars(design)
if (!all(designVars %in% names(colData(se)))) {
stop("all variables in design formula must be columns in colData")
}
designVarsClass <- sapply(designVars, function(v) class(colData(se)[[v]]))
if (any(designVarsClass == "character")) {
warning("some variables in design formula are characters, converting to factors")
for (v in designVars[designVarsClass == "character"]) {
colData(se)[[v]] <- factor(colData(se)[[v]])
}
}
if (length(designVars) == 1) {
var <- colData(se)[[designVars]]
if (all(var == var[1])) {
stop("design has a single variable, with all samples having the same value.
use instead a design of '~ 1'. estimateSizeFactors, rlog and the VST can then be used")
}
}
designVarsNumeric <- sapply(designVars, function(v) is.numeric(colData(se)[[v]]))
if (any(designVarsNumeric)) {
warnIntVars <- FALSE
for (v in designVars[designVarsNumeric]) {
if (all(colData(se)[[v]] == round(colData(se)[[v]]))) {
warnIntVars <- TRUE
}
}
if (warnIntVars) {
message(paste0("the design formula contains a numeric variable with integer values,
specifying a model with increasing fold change for higher values.
did you mean for this to be a factor? if so, first convert
this variable to a factor using the factor() function"))
}
}
designFactors <- designVars[designVarsClass == "factor"]
missingLevels <- sapply(designFactors,function(v) any(table(colData(se)[[v]]) == 0))
if (any(missingLevels)) {
message("factor levels were dropped which had no samples")
for (v in designFactors[missingLevels]) {
colData(se)[[v]] <- droplevels(colData(se)[[v]])
}
}
modelMatrix <- model.matrix(design, data=as.data.frame(colData(se)))
if (!ignoreRank) {
checkFullRank(modelMatrix)
}
# if the last variable in the design formula is a
# factor, and has a level 'control', check if it is
# the reference level and if not print a message
lastDV <- length(designVars)
if (length(designVars) > 0 && designVarsClass[lastDV] == "factor") {
lastDVLvls <- levels(colData(se)[[designVars[lastDV]]])
controlSynonyms <- c("control","Control","CONTROL")
for (cSyn in controlSynonyms) {
if (cSyn %in% lastDVLvls) {
if (cSyn != lastDVLvls[1]) {
message(paste0("it appears that the last variable in the design formula, '",designVars[lastDV],"',
has a factor level, '",cSyn,"', which is not the reference level. we recommend
to use factor(...,levels=...) or relevel() to set this as the reference level
before proceeding. for more information, please see the 'Note on factor levels'
in vignette('DESeq2')."))
}
}
}
}
# Add columns on the columns
mcolsCols <- DataFrame(type=rep("input",ncol(colData(se))),
description=rep("",ncol(colData(se))))
mcols(colData(se)) <- if (is.null(mcols(colData(se)))) {
mcolsCols
} else if (all(names(mcols(colData(se))) == c("type","description"))) {
mcolsCols
} else {
cbind(mcols(colData(se)), mcolsCols)
}
dds <- new("DESeqDataSet", se, design = design)
# now we know we have at least an empty GRanges or GRangesList for rowRanges
# so we can create a metadata column 'type' for the mcols
# and we label any incoming columns as 'input'
# this is metadata columns on the rows
mcolsRows <- DataFrame(type=rep("input",ncol(mcols(dds))),
description=rep("",ncol(mcols(dds))))
mcols(mcols(dds)) <- if (is.null(mcols(mcols(dds)))) {
mcolsRows
} else if (all(names(mcols(mcols(dds))) == c("type","description"))) {
mcolsRows
} else {
cbind(mcols(mcols(dds)), mcolsRows)
}
return(dds)
}
#' @rdname DESeqDataSet
#' @export
DESeqDataSetFromMatrix <- function( countData, colData, design, tidy=FALSE, ignoreRank=FALSE, ... )
{
if (tidy) {
stopifnot(ncol(countData) > 1)
rownms <- as.character(countData[,1])
countData <- countData[,-1,drop=FALSE]
rownames(countData) <- rownms
}
# we expect a matrix of counts, which are non-negative integers
countData <- as.matrix( countData )
if (is(colData,"data.frame")) colData <- DataFrame(colData, row.names=rownames(colData))
# check if the rownames of colData are simply in different order
# than the colnames of the countData, if so throw an error
# as the user probably should investigate what's wrong
if (!is.null(rownames(colData)) & !is.null(colnames(countData))) {
if (all(sort(rownames(colData)) == sort(colnames(countData)))) {
if (!all(rownames(colData) == colnames(countData))) {
stop(paste("rownames of the colData:
",paste(rownames(colData),collapse=","),"
are not in the same order as the colnames of the countData:
",paste(colnames(countData),collapse=",")))
}
}
}
if (is.null(rownames(colData)) & !is.null(colnames(countData))) {
rownames(colData) <- colnames(countData)
}
se <- SummarizedExperiment(assays = SimpleList(counts=countData), colData = colData, ...)
dds <- DESeqDataSet(se, design = design, ignoreRank)
return(dds)
}
#' @rdname DESeqDataSet
#' @export
DESeqDataSetFromHTSeqCount <- function( sampleTable, directory="", design, ignoreRank=FALSE, ...)
{
if (missing(design)) {
stop("design is missing")
}
l <- lapply( as.character( sampleTable[,2] ), function(fn)
read.table( file.path( directory, fn ) ) )
if( ! all( sapply( l, function(a) all( a$V1 == l[[1]]$V1 ) ) ) )
stop( "Gene IDs (first column) differ between files." )
tbl <- sapply( l, function(a) a$V2 )
colnames(tbl) <- sampleTable[,1]
rownames(tbl) <- l[[1]]$V1
rownames(sampleTable) <- sampleTable[,1]
oldSpecialNames <- c( "no_feature", "ambiguous",
"too_low_aQual", "not_aligned",
"alignment_not_unique" )
# either starts with two underscores
# or is one of the old special names (htseq-count backward compatability)
specialRows <- (substr(rownames(tbl),1,1) == "_") | rownames(tbl) %in% oldSpecialNames
tbl <- tbl[ !specialRows, , drop=FALSE ]
dds <- DESeqDataSetFromMatrix(countData = tbl,
colData = sampleTable[,-(1:2),drop=FALSE],
design = design,
ignoreRank, ...)
return(dds)
}
#' @rdname DESeqResults
#' @export
setClass("DESeqResults", contains="DataFrame")
#' DESeqResults object and constructor
#'
#' This constructor function would not typically be used by "end users".
#' This simple class extends the DataFrame class of the IRanges package
#' to allow other packages to write methods for results
#' objects from the DESeq2 package. It is used by \code{\link{results}}
#' to wrap up the results table.
#'
#' @param DataFrame a DataFrame of results, standard column names are:
#' baseMean, log2FoldChange, lfcSE, stat, pvalue, padj.
#'
#' @return a DESeqResults object
#' @docType class
#' @aliases DESeqResults-class
#' @rdname DESeqResults
#' @export
DESeqResults <- function(DataFrame) {
new("DESeqResults", DataFrame)
}
#' @rdname DESeqTransform
#' @export
setClass("DESeqTransform", contains="SummarizedExperiment")
#' DESeqTransform object and constructor
#'
#' This constructor function would not typically be used by "end users".
#' This simple class extends the SummarizedExperiment class of the GenomicRanges package.
#' It is used by \code{\link{rlog}} and
#' \code{\link{varianceStabilizingTransformation}}
#' to wrap up the results into a class for downstream methods,
#' such as \code{\link{plotPCA}}.
#'
#' @param SummarizedExperiment a SummarizedExperiment
#'
#' @return a DESeqTransform object
#' @docType class
#' @aliases DESeqTransform-class
#' @rdname DESeqTransform
#' @export
DESeqTransform <- function(SummarizedExperiment) {
new("DESeqTransform", SummarizedExperiment)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.