#' Seeding PANDA Interactions to Derive Epigenetic Regulation
#'
#' This function runs the SPIDER algorithm
#'
#' @param motif A motif dataset, a data.frame, matrix or exprSet containing 3 columns.
#' Each row describes an motif associated with a transcription factor (column 1) a
#' gene (column 2) and a score (column 3) for the motif.
#' @param epifilter A binary matrix that is of the same size as motif that will be used as a mask to filter motif
#' for open chromatin region. Motif interactions that fall in open chromatin region will be kept and the others are removed.
#' @param expr An expression dataset, as a genes (rows) by samples (columns) data.frame
#' @param ppi A Protein-Protein interaction dataset, a data.frame containing 3 columns.
#' Each row describes a protein-protein interaction between transcription factor 1(column 1),
#' transcription factor 2 (column 2) and a score (column 3) for the interaction.
#' @param alpha value to be used for update variable, alpha (default=0.1)
#' @param hamming value at which to terminate the process based on hamming distance (default 10^-3)
#' @param iter sets the maximum number of iterations SPIDER can run before exiting.
#' @param progress Boolean to indicate printing of output for algorithm progress.
#' @param output a vector containing which networks to return. Options include "regulatory",
#' "coregulatory", "cooperative".
#' @param zScale Boolean to indicate use of z-scores in output. False will use [0,1] scale.
#' @param randomize method by which to randomize gene expression matrix. Default "None". Must
#' be one of "None", "within.gene", "by.genes". "within.gene" randomization scrambles each row
#' of the gene expression matrix, "by.gene" scrambles gene labels.
#' @param cor.method Correlation method, default is "pearson".
#' @param scale.by.present Boolean to indicate scaling of correlations by percentage of positive samples.
#' @param remove.missing.ppi Boolean to indicate whether TFs in the PPI but not in the motif data should be
#' removed. Only when mode=='legacy'.
#' @param remove.missing.motif Boolean to indicate whether genes targeted in the motif data but not the
#' expression data should be removed. Only when mode=='legacy'.
#' @param remove.missing.genes Boolean to indicate whether genes in the expression data but lacking
#' information from the motif prior should be removed. Only when mode=='legacy'.
#' @param edgelist Boolean to indicate if edge lists instead of matrices should be returned.
#' @param mode The data alignment mode. The mode 'union' takes the union of the genes in the expression matrix and the motif
#' and the union of TFs in the ppi and motif and fills the matrics with zeros for nonintersecting TFs and gens, 'intersection'
#' takes the intersection of genes and TFs and removes nonintersecting sets, 'legacy' is the old behavior with PANDAR version 1.19.3.
#' #' Parameters remove.missing.ppi, remove.missingmotif, remove.missing.genes work only with mode=='legacy'.
#' @keywords keywords
#' @importFrom matrixStats rowSds
#' @importFrom matrixStats colSds
#' @importFrom Biobase assayData
#' @importFrom reshape melt.array
#' @export
#' @return An object of class "panda" containing matrices describing networks achieved by convergence
#' with SPIDER algorithm.\cr
#' "regNet" is the regulatory network\cr
#' "coregNet" is the coregulatory network\cr
#' "coopNet" is the cooperative network
#' @examples
#' data(pandaToyData)
#' pandaToyData$epifilter = pandaToyData$motif
#' nind=floor(runif(5000, min=1, max=dim(pandaToyData$epifilter)[1]))
#' pandaToyData$epifilter[nind,3] = 0
#' spiderRes <- spider(pandaToyData$motif,pandaToyData$expression,
#' pandaToyData$epifilter,pandaToyData$ppi,hamming=.1,progress=TRUE)
#' @references
#' Sonawane, Abhijeet Rajendra, et al. "Constructing gene regulatory networks using epigenetic data." npj Systems Biology and Applications 7.1 (2021): 1-13.
spider <- function(motif,expr=NULL,epifilter=NULL,ppi=NULL,alpha=0.1,hamming=0.001,
iter=NA,output=c('regulatory','coexpression','cooperative'),
zScale=TRUE,progress=FALSE,randomize=c("None", "within.gene", "by.gene"),cor.method="pearson",
scale.by.present=FALSE,edgelist=FALSE,remove.missing.ppi=FALSE,
remove.missing.motif=FALSE,remove.missing.genes=FALSE,mode="union"){
randomize <- match.arg(randomize)
if(progress)
print('Initializing and validating')
if(any(epifilter[,c(1,2)] != motif[,c(1,2)])){
stop('Chromatin accessibility data does not match motif data size and order.')
}
if(is(expr, "ExpressionSet"))
expr <- assayData(expr)[["exprs"]]
if (is.null(expr)){
# Use only the motif data here for the gene list
num.conditions <- 0
if (randomize!="None"){
warning("Randomization ignored because gene expression is not used.")
randomize <- "None"
}
} else {
if(mode=='legacy'){
if(remove.missing.genes){
# remove genes from expression data that are not in the motif data
n <- nrow(expr)
expr <- expr[which(rownames(expr)%in%motif[,2]),]
message(sprintf("%s genes removed that were not present in motif", n-nrow(expr)))
}
if(remove.missing.motif){
# remove genes from motif data that are not in the expression data
n <- nrow(motif)
motif <- motif[which(motif[,2]%in%rownames(expr)),]
epifilter <- epifilter[which(motif[,2]%in%rownames(expr)),]
message(sprintf("%s motif edges removed that targeted genes missing in expression data", n-nrow(motif)))
}
# Use the motif data AND the expr data (if provided) for the gene list
# Keep everything sorted alphabetically
expr <- expr[order(rownames(expr)),]
}else if(mode=='union'){
gene.names=unique(union(rownames(expr),unique(motif[,2])))
tf.names =unique(union(unique(ppi[,1]),unique(motif[,1])))
num.TFs <- length(tf.names)
num.genes <- length(gene.names)
# gene expression matrix
expr1=as.data.frame(matrix(0,num.genes,ncol(expr)))
rownames(expr1)=gene.names
expr1[which(gene.names%in%rownames(expr)),]=expr[]
expr=expr1
#PPI matrix
tfCoopNetwork <- matrix(0,num.TFs,num.TFs)
colnames(tfCoopNetwork)=tf.names
rownames(tfCoopNetwork)=tf.names
Idx1 <- match(ppi[,1], tf.names);
Idx2 <- match(ppi[,2], tf.names);
Idx <- (Idx2-1)*num.TFs+Idx1;
tfCoopNetwork[Idx] <- ppi[,3];
Idx <- (Idx1-1)*num.TFs+Idx2;
tfCoopNetwork[Idx] <- ppi[,3];
#Motif matrix
regulatoryNetwork=matrix(0,num.TFs,num.genes)
colnames(regulatoryNetwork)=gene.names
rownames(regulatoryNetwork)=tf.names
Idx1=match(motif[,1], tf.names);
Idx2=match(motif[,2], gene.names);
Idx=(Idx2-1)*num.TFs+Idx1;
regulatoryNetwork[Idx]=motif[,3]*epifilter[,3]
}else if(mode=='intersection'){
gene.names=unique(intersect(rownames(expr),unique(motif[,2])))
tf.names =unique(intersect(unique(ppi[,1]),unique(motif[,1])))
num.TFs <- length(tf.names)
num.genes <- length(gene.names)
# gene expression matrix
expr1=as.data.frame(matrix(0,num.genes,ncol(expr)))
rownames(expr1)=gene.names
interGeneNames=gene.names[which(gene.names%in%rownames(expr))]
expr1[interGeneNames,]=expr[interGeneNames,]
expr=expr1
#PPI matrix
tfCoopNetwork <- matrix(0,num.TFs,num.TFs)
colnames(tfCoopNetwork)=tf.names
rownames(tfCoopNetwork)=tf.names
Idx1 <- match(ppi[,1], tf.names);
Idx2 <- match(ppi[,2], tf.names);
Idx <- (Idx2-1)*num.TFs+Idx1;
indIdx=!is.na(Idx)
Idx=Idx[indIdx] #remove missing TFs
tfCoopNetwork[Idx] <- ppi[indIdx,3];
Idx <- (Idx1-1)*num.TFs+Idx2;
indIdx=!is.na(Idx)
Idx=Idx[indIdx] #remove missing TFs
tfCoopNetwork[Idx] <- ppi[indIdx,3];
#Motif matrix
regulatoryNetwork=matrix(0,num.TFs,num.genes)
colnames(regulatoryNetwork)=gene.names
rownames(regulatoryNetwork)=tf.names
Idx1=match(motif[,1], tf.names);
Idx2=match(motif[,2], gene.names);
Idx=(Idx2-1)*num.TFs+Idx1;
indIdx=!is.na(Idx)
Idx=Idx[indIdx] #remove missing genes
regulatoryNetwork[Idx]=motif[indIdx,3]*epifilter[indIdx,3];
}
num.conditions <- ncol(expr)
if (randomize=='within.gene'){
expr <- t(apply(expr, 1, sample))
if(progress)
print("Randomizing by reordering each gene's expression")
} else if (randomize=='by.gene'){
rownames(expr) <- sample(rownames(expr))
expr <- expr[order(rownames(expr)),]
if(progress)
print("Randomizing by reordering each gene labels")
}
}
if (mode=='legacy'){
# Create vectors for TF names and Gene names from motif dataset
tf.names <- sort(unique(motif[,1]))
gene.names <- sort(unique(rownames(expr)))
num.TFs <- length(tf.names)
num.genes <- length(gene.names)
}
# Bad data checking
if (num.genes==0){
stop("Error validating data. No matched genes.\n Please ensure that gene names in expression data match gene names in motif data")
}
if(num.conditions==0) {
warning('No expression data given. SPIDER will run based on an identity co-regulation matrix')
geneCoreg <- diag(num.genes)
} else if(num.conditions<3) {
warning('Not enough expression conditions detected to calculate correlation. Co-regulation network will be initialized to an identity matrix.')
geneCoreg <- diag(num.genes)
} else {
if(scale.by.present){
num.positive=(expr>0)%*%t((expr>0))
geneCoreg <- cor(t(expr), method=cor.method, use="pairwise.complete.obs")*(num.positive/num.conditions)
} else {
geneCoreg <- cor(t(expr), method=cor.method, use="pairwise.complete.obs")
}
if(progress)
print('Verified sufficient samples')
}
if (any(is.na(geneCoreg))){ #check for NA and replace them by zero
diag(geneCoreg)=1
geneCoreg[is.na(geneCoreg)]=0
}
if (any(duplicated(motif))) {
warning("Duplicate edges have been found in the motif data. Weights will be summed.")
motif <- aggregate(motif[,3], by=list(motif[,1], motif[,2]), FUN=sum)
}
# Prior Regulatory Network
if(mode=='legacy'){
Idx1=match(motif[,1], tf.names);
Idx2=match(motif[,2], gene.names);
Idx=(Idx2-1)*num.TFs+Idx1;
regulatoryNetwork=matrix(data=0, num.TFs, num.genes);
regulatoryNetwork[Idx]=motif[,3]
colnames(regulatoryNetwork) <- gene.names
rownames(regulatoryNetwork) <- tf.names
# PPI data
# If no ppi data is given, we use the identity matrix
tfCoopNetwork <- diag(num.TFs)
# Else we convert our two-column data.frame to a matrix
if (!is.null(ppi)){
if(any(duplicated(ppi))){
warning("Duplicate edges have been found in the PPI data. Weights will be summed.")
ppi <- aggregate(ppi[,3], by=list(ppi[,1], ppi[,2]), FUN=sum)
}
if(remove.missing.ppi){
# remove edges in the PPI data that target TFs not in the motif
n <- nrow(ppi)
ppi <- ppi[which(ppi[,1]%in%tf.names & ppi[,2]%in%tf.names),]
message(sprintf("%s PPI edges removed that were not present in motif", n-nrow(ppi)))
}
Idx1 <- match(ppi[,1], tf.names);
Idx2 <- match(ppi[,2], tf.names);
Idx <- (Idx2-1)*num.TFs+Idx1;
tfCoopNetwork[Idx] <- ppi[,3];
Idx <- (Idx1-1)*num.TFs+Idx2;
tfCoopNetwork[Idx] <- ppi[,3];
}
colnames(tfCoopNetwork) <- tf.names
rownames(tfCoopNetwork) <- tf.names
}
## Run SPIDER ##
tic=proc.time()[3]
# adjusting degree distribution
regulatoryNetwork = degreeAdjust(regulatoryNetwork)
if(progress)
print('Normalizing networks...')
regulatoryNetwork = normalizeNetwork(regulatoryNetwork)
tfCoopNetwork = normalizeNetwork(tfCoopNetwork)
geneCoreg = normalizeNetwork(geneCoreg)
if(progress)
print('Learning Network...')
minusAlpha = 1-alpha
step=0
hamming_cur=1
if(progress)
print("Using tanimoto similarity")
while(hamming_cur>hamming){
if ((!is.na(iter))&&step>=iter){
print(paste("Reached maximum iterations, iter =",iter),sep="")
break
}
Responsibility=tanimoto(tfCoopNetwork, regulatoryNetwork)
Availability=tanimoto(regulatoryNetwork, geneCoreg)
RA = 0.5*(Responsibility+Availability)
hamming_cur=sum(abs(regulatoryNetwork-RA))/(num.TFs*num.genes)
regulatoryNetwork=minusAlpha*regulatoryNetwork + alpha*RA
ppi=tanimoto(regulatoryNetwork, t(regulatoryNetwork))
ppi=update.diagonal(ppi, num.TFs, alpha, step)
tfCoopNetwork=minusAlpha*tfCoopNetwork + alpha*ppi
CoReg2=tanimoto(t(regulatoryNetwork), regulatoryNetwork)
CoReg2=update.diagonal(CoReg2, num.genes, alpha, step)
geneCoreg=minusAlpha*geneCoreg + alpha*CoReg2
if(progress)
message("Iteration", step,": hamming distance =", round(hamming_cur,5))
step=step+1
}
toc=proc.time()[3] - tic
if(progress)
message("Successfully ran SPIDER on ", num.genes, " Genes and ", num.TFs, " TFs.\nTime elapsed:", round(toc,2), "seconds.")
prepResult(zScale, output, regulatoryNetwork, geneCoreg, tfCoopNetwork, edgelist, motif)
}
#' Function to adjust the degree so that the hub nodes are not penalized in z-score transformation
#'
#' @param A Input adjacency matrix
degreeAdjust <- function(A){
k1 <- colSums(A)/dim(A)[1]
k2 <- rowSums(A)/dim(A)[2]
B <- (matrix(replicate(dim(A)[1],k1),nrow=dim(A)[1]))^2
B <- B + (matrix(t(replicate(dim(A)[2],k2)),nrow=dim(A)[1]))^2
A <- A * sqrt(B);
}
normalizeNetwork<-function(X){
X <- as.matrix(X)
nr = nrow(X)
nc = ncol(X)
dm = c(nr,nc)
# overall values
mu0=mean(X)
std0=sd(X)*sqrt((nr*nc-1)/(nr*nc))
# operations on rows
mu1=rowMeans(X) # operations on rows
std1=rowSds(X)*sqrt((nc-1)/nc)
mu1=rep(mu1, nc)
dim(mu1) = dm
std1=rep(std1,nc)
dim(std1)= dm
Z1=(X-mu1)/std1
# operations on columns
mu2=colMeans(X) # operations on columns
std2=colSds(X)*sqrt((nr-1)/nr)
mu2 = rep(mu2, each=nr)
dim(mu2) = dm
std2= rep(std2, each=nr)
dim(std2) = dm
Z2=(X-mu2)/std2
# combine and return
normMat=Z1/sqrt(2)+Z2/sqrt(2)
# checks and defaults for missing data
Z0=(X-mu0)/std0;
f1=is.na(Z1); f2=is.na(Z2);
normMat[f1]=Z2[f1]/sqrt(2)+Z0[f1]/sqrt(2);
normMat[f2]=Z1[f2]/sqrt(2)+Z0[f2]/sqrt(2);
normMat[f1 & f2]=2*Z0[f1 & f2]/sqrt(2);
normMat
}
tanimoto<-function(X,Y){
nc = ncol(Y)
nr = nrow(X)
dm = c(nr,nc)
Amat=(X %*% Y)
Bmat=colSums(Y*Y)
Bmat = rep(Bmat,each=nr)
dim(Bmat) = dm
#Bmat=matrix(rep(Bmat, each=nr), dm)
Cmat=rowSums(X*X)
Cmat=rep(Cmat,nc)
dim(Cmat) = dm
#Cmat=matrix(rep(Cmat, nc), dm)
den = (Bmat+Cmat-abs(Amat))
Amat=Amat/sqrt(den)
return(Amat)
}
update.diagonal<-function(diagMat, num, alpha, step){
seqs = seq(1, num*num, num+1)
diagMat[seqs]=NaN;
diagstd=rowSds(diagMat,na.rm=TRUE)
diagstd[is.na(diagstd)]=0#replace NA with zeros
diagstd=diagstd*sqrt( (num-2)/(num-1) );
diagMat[seqs]=diagstd*num*exp(2*alpha*step);
return(diagMat);
}
prepResult <- function(zScale, output, regulatoryNetwork, geneCoreg, tfCoopNetwork, edgelist, motif){
resList <- list()
numGenes = dim(geneCoreg)[1]
numTFs = dim(tfCoopNetwork)[1]
numEdges = sum(regulatoryNetwork!=0)
if (!zScale){
regulatoryNetwork <- pnorm(regulatoryNetwork)
geneCoreg <- pnorm(geneCoreg)
tfCoopNetwork <- pnorm(tfCoopNetwork)
}
if("regulatory"%in%output){
if(edgelist){
regulatoryNetwork <- melt.array(regulatoryNetwork)
colnames(regulatoryNetwork) <- c("TF", "Gene", "Score")
regulatoryNetwork$Motif <- as.numeric(with(regulatoryNetwork, paste0(TF, Gene))%in%paste0(motif[,1],motif[,2]))
}
resList$regNet <- regulatoryNetwork
}
if("coexpression"%in%output){
if(edgelist){
geneCoreg <- melt.array(geneCoreg)
colnames(geneCoreg) <- c("Gene.x", "Gene.y", "Score")
}
resList$coregNet <- geneCoreg
}
if("cooperative"%in%output){
if(edgelist){
tfCoopNetwork <- melt.array(tfCoopNetwork)
colnames(tfCoopNetwork) <- c("TF.x", "TF.y", "Score")
}
resList$coopNet <- tfCoopNetwork
}
pandaObj(regNet=regulatoryNetwork, coregNet=geneCoreg, coopNet=tfCoopNetwork, numGenes=numGenes, numTFs=numTFs, numEdges=numEdges)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.