# Set a default value if the left value is null @param lhs Default value to use
# @param rhs The value to use if lhs is null @author Hadley Wickham @references
# https://adv-r.hadley.nz/functions.html#missing-arguments
#' @export
`%||%` <- function(lhs, rhs) {
if (!is.null(lhs)) {
lhs
} else {
rhs
}
}
#' Integrate seurat objects into one
#' @title scIntegrate
#' @param object.list A list of seurat objects
#' @param object.names An array of seurat object names
#' @param nVariable Number of features to select as top variable features
#' @param nPC Number of PCs to use
#' @param res Resolution parameter to set. Default res=0.5
#' @param batch.rm Remove batch effect with 'seurat' or 'harmony'.
#' Default batch.rm='harmony'
#' @return Seurat object.
#' @author rstatistics
#' @export
scIntegrate <- function(object.list = NULL, object.names = NULL,
nVariable = 2000, nPC = 30, res = 0.5,
batch.rm = "harmony") {
# Merge each seurat object
meta.list <- list()
meta.table <- object.list[[1]]@meta.data
for (i in 2:length(object.list)) {
meta.table <- dplyr::bind_rows(meta.table, object.list[[i]]@meta.data)
}
meta.table[is.na(meta.table)] <- 0
object <- merge(object.list[[1]], y = object.list[2:length(object.list)],
add.cell.ids = as.character(object.names), project = "seurat")
rownames(meta.table) <- rownames(object@meta.data)
object@meta.data <- meta.table
object <- Seurat::NormalizeData(object, verbose = TRUE)
object <- Seurat::FindVariableFeatures(object, selection.method = "vst",
nfeatures = nVariable)
object <- Seurat::ScaleData(object, vars.to.regress = c("nCount_RNA",
"percent.mito"), verbose = TRUE)
object <- Seurat::RunPCA(object, pc.genes = Seurat::VariableFeatures(object),
npcs = nPC, verbose = TRUE)
object <- harmony::RunHarmony(object = object, group.by.vars = "sample",
assay.use = Seurat::DefaultAssay(object), plot_convergence = TRUE)
if (batch.rm == "harmony") {
object <- Seurat::FindNeighbors(object, reduction = "harmony",
dims = seq_len(nPC))
object <- Seurat::FindClusters(object, resolution = res)
object <- Seurat::RunUMAP(object, reduction = "harmony",
dims = seq_len(nPC))
object <- Seurat::RunTSNE(object, reduction = "harmony",
dims = seq_len(nPC), do.fast = TRUE)
} else if (batch.rm == "seurat") {
object <- Seurat::FindNeighbors(object, reduction = "pca",
dims = seq_len(nPC))
object <- Seurat::FindClusters(object, resolution = res)
object <- Seurat::RunUMAP(object, reduction = "pca", dims = seq_len(nPC))
object <- Seurat::RunTSNE(object, reduction = "pca", dims = seq_len(nPC))
} else {
stop("batch.rm must be 'harmony' or 'seurat'!")
}
cols <- NA
if (length(levels(Seurat::Idents(object))) <= 36) {
cols = c("#1660A7", "#FF6A00", "#219418", "#CD0C18", "#814BB2", "#794339",
"#DC59B6", "#CC79A7", "#FF0000", "#11B3C6", "#AFB400", "#00FFFF",
"#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2",
"#D55E00", "#D55E00", "#CC79A7", "#00AFBB", "#E69F00", "#009E73",
"#56B4E9", "#F0E442", "#0072B2", "#D55E00", "#CC79A7", "#4477AA",
"#EE6677", "#228833", "#CCBB44", "#66CCEE", "#AA3377", "#BBBBBB")
object@misc$cols = cols
}
# Add reduction coordinates into Meta.data slot
reductions <- intersect(c("pca", "tsne", "umap"), names(object))
for (reduction in reductions) {
meta_ids <- gsub("coord", toupper(reduction), c("coord_1", "coord_2"))
coord <- Seurat::Embeddings(object = object, reduction = reduction)[, c(1, 2)]
object <- Seurat::AddMetaData(object = object, metadata = coord,
col.name = meta_ids)
}
return(object)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.