#' Examining the clonal homeostasis of the repertoire
#'
#' This function calculates the space occupied by clone proportions.
#' The grouping of these clones is based on the parameter **cloneSize**,
#' at default, **cloneSize** will group the clones into bins of Rare = 0
#' to 0.0001, Small = 0.0001 to 0.001, etc. To adjust the proportions,
#' change the number or labeling of the cloneSize parameter. If a matrix
#' output for the data is preferred, set **exportTable** = TRUE.
#'
#' @examples
#' #Making combined contig data
#' combined <- combineTCR(contig_list,
#' samples = c("P17B", "P17L", "P18B", "P18L",
#' "P19B","P19L", "P20B", "P20L"))
#' clonalHomeostasis(combined, cloneCall = "gene")
#'
#' @param input.data The product of [combineTCR()],
#' [combineBCR()], or [combineExpression()].
#' @param cloneSize The cut points of the proportions.
#' @param cloneCall How to call the clone - VDJC gene (**gene**),
#' CDR3 nucleotide (**nt**), CDR3 amino acid (**aa**),
#' VDJC gene + CDR3 nucleotide (**strict**) or a custom variable
#' in the data.
#' @param chain indicate if both or a specific chain should be used -
#' e.g. "both", "TRA", "TRG", "IGH", "IGL".
#' @param group.by The variable to use for grouping
#' @param order.by A vector of specific plotting order or "alphanumeric"
#' to plot groups in order
#' @param exportTable Exports a table of the data into the global
#' environment in addition to the visualization.
#' @param palette Colors to use in visualization - input any
#' [hcl.pals][grDevices::hcl.pals].
#' @import ggplot2
#' @importFrom stringr str_split
#' @importFrom reshape2 melt
#' @importFrom dplyr bind_rows
#' @export
#' @concept Visualizing_Clones
#' @return ggplot of the space occupied by the specific proportion of clones
clonalHomeostasis <- function(input.data,
cloneSize = c(Rare = .0001, Small = .001, Medium = .01, Large = .1, Hyperexpanded = 1),
cloneCall = "strict",
chain = "both",
group.by = NULL,
order.by = NULL,
exportTable = FALSE,
palette = "inferno") {
cloneSize <- c(None = 0, cloneSize)
input.data <- .data.wrangle(input.data,
group.by,
.theCall(input.data, cloneCall, check.df = FALSE),
chain)
cloneCall <- .theCall(input.data, cloneCall)
sco <- is_seurat_object(input.data) | is_se_object(input.data)
if(!is.null(group.by) & !sco) {
input.data <- .groupList(input.data, group.by)
}
#Generating data matrix to store value
mat <- matrix(0, length(input.data), length(cloneSize) - 1,
dimnames = list(names(input.data),
names(cloneSize)[-1]))
#Assigning the clonal grouping
input.data <- lapply(input.data, '[[', cloneCall)
input.data <- lapply(input.data, na.omit)
fun <- function(x) { table(x)/length(x) }
input.data <- lapply(input.data, fun)
for (i in 2:length(cloneSize)) {
mat[,i-1] <- vapply(input.data, function (x)
sum(x[x > cloneSize[i-1] & x <= cloneSize[i]]), FUN.VALUE = numeric(1))
colnames(mat)[i-1] <- paste0(names(cloneSize[i]), ' (',
cloneSize[i-1], ' < X <= ',
cloneSize[i], ')') }
if (exportTable) {
return(mat)
}
#Plotting
mat_melt <- melt(mat)
if(!is.null(order.by)) {
mat_melt <- .ordering.function(vector = order.by,
group.by = "Var1",
data.frame = mat_melt)
}
col <- length(unique(mat_melt$Var2))
plot <- ggplot(mat_melt, aes(x=as.factor(Var1), y=value, fill=Var2)) +
geom_bar(stat = "identity", position="fill",
color = "black", lwd= 0.25) +
scale_fill_manual(name = "Clonal Group",
values = .colorizer(palette,col)) +
xlab("Samples") +
ylab("Relative Abundance") +
theme_classic()
return(plot)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.