R/OptimRRp.R

Defines functions RRrunner

# Reference range OPT core
RRrunner <- function(object,
                     formula = ~ category + Genotype + Sex + LifeStage,
                     rep = 1500,
                     method = NULL,
                     RRrefLevel = NULL,
                     RRprop = .05,
                     ci_levels = 0.95,
                     fullComparisions = TRUE,
                     InterLevelComparisions = TRUE,
                     ...) {
  requireNamespace("rlist")
  sta.time <- Sys.time()
  allTerms <- all_vars0(x = formula)
  if (!method %in% c("RR") ||
    is.null(allTerms) ||
    is.null(object) ||
    sum(allTerms %in% names(object@datasetPL)) < 2) {
    #####
    message0(
      "Improper method (",
      method,
      ") for the type of data, or the `formula/data` is not properly specified/left blank. \n\tFormula: ",
      printformula(formula)
    )
    return(NULL)
  }
  # message0('RR+ framework in progress ...')
  if (is.null(RRprop) ||
    !is.numeric(RRprop) ||
    RRprop <= 0.5 ||
    RRprop >= 1.0) {
    message0("`RRprop` must be a value greater than 0.5 and less than 1")
    warnings('Improper value for "RRprop"')
    return(NULL)
  }
  RRpropTrans <- MakeRRQuantileFromTheValue(RRprop)
  cleanFormulaForOutput <- checkModelTermsInData(
    formula = formula,
    data = object@datasetPL,
    responseIsTheFirst = TRUE
  )
  message0(
    "Discritizing the continuous data into discrete levels. The quantile = ",
    RRpropTrans
  )
  message0("Stp 1. Low versus Normal/High")
  RRobject_low <- RRDiscretizedEngine(
    data = object@datasetPL,
    formula = cleanFormulaForOutput,
    depVar = allTerms[1],
    lower = allTerms[2],
    refLevel = RRrefLevel,
    labels = c("Low", "NormalHigh"),
    depVarPrefix = "Low",
    right = TRUE,
    prob = 1 - RRpropTrans
  )
  message0("Stp 2. Low/Normal versus High")
  RRobject_high <- RRDiscretizedEngine(
    data = object@datasetPL,
    formula = cleanFormulaForOutput,
    depVar = allTerms[1],
    lower = allTerms[2],
    refLevel = RRrefLevel,
    labels = c("LowNormal", "High"),
    depVarPrefix = "High",
    right = FALSE,
    prob = RRpropTrans
  )
  ###########################
  message0(
    "Fisher exact test with ",
    ifelse(rep > 0, rep, "No"),
    " iteration(s) in progress ..."
  )
  message0("Analysing Low vs NormalHigh ...")
  RRresult_low <- lapply(RRobject_low, function(x) {
    r <- suppressMessages(
      crunner(
        object = x$newobject,
        formula = x$newFormula,
        rep = rep,
        method = "RR",
        fullComparisions = fullComparisions,
        InterLevelComparisions = InterLevelComparisions,
        noteToFinish = "in Low vs NormalHigh",
        ci_levels = ci_levels,
        RRextraResults = list(
          depVariable = x$depVariable,
          disdepVariable = x$newDepVariable,
          RRpropTransformed = x$RRprop,
          RRLabels = x$labels,
          RRprefix = x$depVarPrefix,
          RRreferenceLevel = x$refLevel,
          RRempiricalQuantiles = x$empiricalQuantiles
        ),
        trimWC = FALSE,
        ...
      )
    )
    return(r$output$SplitModels)
  })
  message0("Analysing LowNormal vs High ...")
  RRresult_high <- lapply(RRobject_high, function(x) {
    r <- suppressMessages(
      crunner(
        object = x$newobject,
        formula = x$newFormula,
        rep = rep,
        method = "RR",
        fullComparisions = fullComparisions,
        InterLevelComparisions = InterLevelComparisions,
        noteToFinish = "in LowNormal vs High",
        ci_levels = ci_levels,
        RRextraResults = list(
          depVariable = x$depVariable,
          disdepVariable = x$newDepVariable,
          RRpropTransformed = x$RRprop,
          RRLabels = x$labels,
          RRprefix = x$depVarPrefix,
          RRreferenceLevel = x$refLevel,
          RRempiricalQuantiles = x$empiricalQuantiles
        ),
        trimWC = FALSE,
        ...
      )
    )
    return(r$output$SplitModels)
  })
  message0("RR framework executed in ", round(difftime(Sys.time(), sta.time, units = "sec"), 2), " second(s).")
  #####
  SpltResult <- lapply(c(
    Low = RRresult_low,
    High = RRresult_high
  ), function(x) {
    x[[1]]
  })
  OutR <- list(
    output = list(SplitModels = list.clean(SpltResult)),
    input = list(
      OpenStatsList = object,
      data = object@datasetPL,
      depVariable = allTerms[1],
      rep = rep,
      method = method,
      formula = formula,
      prop = RRprop,
      ci_level = ci_levels,
      refLevel = RRrefLevel,
      full_comparisions = c(fullComparisions, InterLevelComparisions)
    ),
    extra = list(
      Cleanedformula = cleanFormulaForOutput,
      TransformedRRprop = RRpropTrans
    )
  )
  class(OutR) <- "OpenStatsRR"
  return(OutR)
}
mpi2/OpenStats documentation built on Sept. 17, 2022, 3:58 p.m.