OpenStatsReportCont <- function(object,
debug = FALSE) {
if (!is.null(object$messages)) {
return(NULL)
}
#####################################################################
Labels <- OpenStatsListLevels(object = object)
Fmodel <- object$output$Final.Model
frm <- formula(Fmodel)
fim <- object$input$fixed
depVariable <- all_vars0(frm)[1]
equation <- ifelse(
Labels$Weight %in% all_vars0(frm),
paste0("including ", Labels$Weight),
paste0("not including ", Labels$Weight)
)
formula <- printformula(frm)
# modelContrast = modelContrasts(formula = frm,data = object$input$data)
framework <- switch(
# object$output$Final.Model.Tag
class(object$output$Final.Model),
lme = "Linear Mixed Model framework",
gls = "Linear Model Using Generalized Least Squares framework",
glm = "Generalized Linear Model framework"
)
# fittingMethod = toupper(object$output$Final.Model.Tag)
fittingMethod <- toupper(class(object$output$Final.Model))
#####################################################################
x <- object$input$OpenStatsList@datasetPL
columnOfInterest <- x[, c(depVariable)]
#####################################################################
variability <- list(
"Value" = length(unique(columnOfInterest)) / max(length(columnOfInterest), 1),
"Type" = "Total unique response divided by total number of response"
)
#####################################################################
DSsize <- SummaryStats(
x = object$input$data,
formula = checkModelTermsInData(
formula = object$input$fixed,
data = x,
responseIsTheFirst = TRUE
),
# label = 'Summary statistics',
lower = TRUE,
drop = TRUE,
sep = "_"
)
MultiBatch <- ifelse(multiBatch(x),
"Dataset contains multiple batches",
"Dataset contains single batch"
)
addInfo <- list(
Data = list(
"Data signature" = dataSignature(
formula = object$input$fixed,
data = object$input$data
),
"Variability" = variability,
"Summary statistics" = DSsize
),
# 'Formula' = list(
# input = printformula(object$input$fixed),
# final = printformula(formula)
# ),
Analysis = list(
"Model setting" = extractLmeTerms(object),
"Is model optimised" = optimM(object$output$optimised),
"Multibatch in analysis" = MultiBatch,
"Gender included in analysis" = GenderIncludedInAnalysis(x),
"Further models" = if (!is.null(object$output$SplitModels)) {
lapply(object$output$SplitModels, function(v) {
if (class(v) %in% c("lme", "gls", "glm")) {
r <- as.list(unmatrix0(summary1(v)$tTable))
r$Model <- printformula(v$SplitFormula)
r$Method <- pasteComma(class(v), truncate = FALSE)
} else {
r <- v
}
return(r)
})
} else {
NULL
},
"Effect sizes" = object$output$"Effect sizes",
"Other residual normality tests" = object$output$ResidualNormalityTests
)
)
#####################################################################
pcS <- object$output$"Effect sizes"$"Combined effect sizes.Genotype_Sex"$"Percentage change"
pcO <- object$output$"Effect sizes"$Genotype$"Percentage change"
percentageChanges <- if (!is.null(pcS)) {
pcS
} else {
pcO
}
SexDymFinalModel <- TermInFormulaReturn(
active = TRUE,
formula = frm,
term = CombineLevels(Labels$Genotype$Genotype, Labels$Sex$Sex, debug = debug),
return = TRUE,
not = FALSE,
debug = debug
)
SexDymInputModel <- TermInFormulaReturn(
active = TRUE,
formula = fim,
term = CombineLevels(Labels$Genotype$Genotype, Labels$Sex$Sex, debug = debug),
return = TRUE,
not = FALSE,
debug = debug
)
#####################################################################
OpenStatsReportMM0 <- list(
"Applied method" = paste0(framework, ", ", fittingMethod, ", ", format(equation)),
"Dependent variable" = depVariable,
"Batch included" = object$output$BatchIn,
"Batch p-value" = NULL,
"Residual variances homogeneity" = object$output$VarHomoIn,
"Residual variances homogeneity p-value" = NULL,
#####################################################################
"Genotype contribution" = list(
Overall = TermInFormulaReturn(
active = TRUE,
formula = frm,
term = CombineLevels(Labels$Genotype$Genotype,
Labels$Sex$Sex,
debug = debug
),
return = NULL,
not = modelSummaryPvalueExtract(
x = Fmodel,
variable = Labels$Genotype$Genotype,
anova = TRUE,
debug = debug
),
debug = debug
),
"Sex FvKO p-value" = TermInFormulaReturn(
active = TRUE,
formula = frm,
term = CombineLevels(
Labels$Sex$Sex,
Labels$Genotype$Genotype,
debug = debug
),
not = NULL,
return = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex,
# SexFemale:Genotypeexperimental
variable = CombineLevels(
paste0("Sex", Labels$Sex$Female),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
debug = debug
),
debug = debug
),
"Sex MvKO p-value" = TermInFormulaReturn(
active = TRUE,
formula = frm,
term = CombineLevels(
Labels$Sex$Sex,
Labels$Genotype$Genotype,
debug = debug
),
not = NULL,
return = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex,
variable = CombineLevels(
paste0("Sex", Labels$Sex$Male),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
debug = debug
),
debug = debug
),
"Sexual dimorphism detected" = list(
"Criteria" = SexDymFinalModel,
"Note" = paste0(
"Genotype-Sex interaction ",
ifelse(SexDymInputModel, "is", "is not"),
" part of the input ",
ifelse(SexDymFinalModel, "(it is part of the final)", "(it is not part of the final)"),
" model. "
)
)
),
"Genotype estimate" =
modelSummaryPvalueExtract(
x = Fmodel,
variable = unlist(Labels$Genotype$Levels),
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"Genotype standard error" =
modelSummaryPvalueExtract(
x = Fmodel,
variable = unlist(Labels$Genotype$Levels),
anova = FALSE,
what = "Std.Error",
debug = debug
),
"Genotype p-value" =
modelSummaryPvalueExtract(
x = Fmodel,
variable = Labels$Genotype$Genotype,
anova = TRUE,
debug = debug
),
"Genotype percentage change" = percentageChanges,
"Genotype effect size" = object$output$"Effect sizes"[[Labels$Genotype$Genotype]],
#####################################################################
"Sex estimate" = modelSummaryPvalueExtract(
x = Fmodel,
variable = unlist(Labels$Sex$Levels),
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"Sex standard error" = modelSummaryPvalueExtract(
x = Fmodel,
variable = unlist(Labels$Sex$Levels),
anova = FALSE,
what = "Std.Error",
debug = debug
),
"Sex p-value" = modelSummaryPvalueExtract(
x = Fmodel,
variable = Labels$Sex$Sex,
anova = TRUE,
debug = debug
),
"Sex effect size" = object$output$"Effect sizes"[[Labels$Sex$Sex]],
#####################################################################
"LifeStage estimate" = modelSummaryPvalueExtract(
x = Fmodel,
variable = unlist(Labels$LifeStage$Levels),
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"LifeStage standard error" = modelSummaryPvalueExtract(
x = Fmodel,
variable = unlist(Labels$LifeStage$Levels),
anova = FALSE,
what = "Std.Error",
debug = debug
),
"LifeStage p-value" = modelSummaryPvalueExtract(
x = Fmodel,
variable = Labels$LifeStage$LifeStage,
anova = TRUE,
debug = debug
),
"LifeStage effect size" = object$output$"Effect sizes"[[Labels$LifeStage$LifeStage]],
#####################################################################
"Weight estimate" = modelSummaryPvalueExtract(
x = Fmodel,
variable = Labels$Weight,
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"Weight standard error" = modelSummaryPvalueExtract(
x = Fmodel,
variable = Labels$Weight,
anova = FALSE,
what = "Std.Error",
debug = debug
),
"Weight p-value" = modelSummaryPvalueExtract(
x = Fmodel,
variable = Labels$Weight,
anova = TRUE,
debug = debug
),
"Weight effect size" = object$output$"Effect sizes"[[Labels$Weight]],
#####################################################################
"Gp1 genotype" = Labels$Genotype$Control,
"Gp1 Residuals normality test" = object$output$ResidualNormalityTests$Genotype[Labels$Genotype$Control][[1]],
"Gp2 genotype" = Labels$Genotype$Mutant,
"Gp2 Residuals normality test" = object$output$ResidualNormalityTests$Genotype[Labels$Genotype$Mutant][[1]],
#####################################################################
"Blups test" = NULL,
"Rotated residuals normality test" = NULL,
#####################################################################
"Intercept estimate" = modelSummaryPvalueExtract(
x = Fmodel,
variable = "(Intercept)",
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"Intercept standard error" = modelSummaryPvalueExtract(
x = Fmodel,
variable = "(Intercept)",
anova = FALSE,
what = "Std.Error",
debug = debug
),
"Intercept p-value" = modelSummaryPvalueExtract(
x = Fmodel,
variable = "(Intercept)",
anova = TRUE,
debug = debug
),
#####################################################################
"Interactions included" = list(
"Genotype Sex" = TermInFormulaReturn(
formula = frm,
term = CombineLevels(Labels$Genotype$Genotype, Labels$Sex$Sex, debug = debug),
return =
!is.null(
modelSummaryPvalueExtract(
x = Fmodel,
variable = CombineLevels(Labels$Genotype$Genotype, Labels$Sex$Sex, debug = debug),
anova = TRUE,
debug = debug
)
),
not = NULL
),
"Genotype LifeStage" = TermInFormulaReturn(
formula = frm,
term = CombineLevels(Labels$Genotype$Genotype, Labels$LifeStage$LifeStage, debug = debug),
return = !is.null(
modelSummaryPvalueExtract(
x = Fmodel,
variable = CombineLevels(Labels$Genotype$Genotype, Labels$LifeStage$LifeStage, debug = debug),
anova = TRUE,
debug = debug
)
),
not = NULL
),
"Sex LifeStage" = TermInFormulaReturn(
formula = frm,
term = CombineLevels(Labels$Sex$Sex, Labels$LifeStage$LifeStage, debug = debug),
return = !is.null(
modelSummaryPvalueExtract(
x = Fmodel,
variable = CombineLevels(Labels$Sex$Sex, Labels$LifeStage$LifeStage, debug = debug),
anova = TRUE,
debug = debug
)
),
not = NULL
),
"Genotype Sex LifeStage" = TermInFormulaReturn(
formula = frm,
term = CombineLevels(
Labels$Genotype$Genotype,
Labels$Sex$Sex,
Labels$LifeStage$LifeStage,
len = 3,
debug = debug
),
return = !is.null(
modelSummaryPvalueExtract(
x = Fmodel,
variable = CombineLevels(
Labels$Genotype$Genotype,
Labels$Sex$Sex,
Labels$LifeStage$LifeStage,
len = 3,
debug = debug
),
anova = TRUE,
debug = debug
)
),
not = NULL
)
),
#####################################################################
################ interaction
"Interactions p-value" = list(
"Genotype Sex" =
modelSummaryPvalueExtract(
x = Fmodel,
variable = CombineLevels(Labels$Genotype$Genotype, Labels$Sex$Sex, debug = debug),
anova = TRUE,
debug = debug
),
"Genotype LifeStage" =
modelSummaryPvalueExtract(
x = Fmodel,
variable = CombineLevels(Labels$Genotype$Genotype, Labels$LifeStage$LifeStage, debug = debug),
anova = TRUE,
debug = debug
),
"Sex LifeStage" =
modelSummaryPvalueExtract(
x = Fmodel,
variable = CombineLevels(Labels$Sex$Sex, Labels$LifeStage$LifeStage, debug = debug),
anova = TRUE,
debug = debug
),
"Genotype Sex LifeStage" =
modelSummaryPvalueExtract(
x = Fmodel,
variable = CombineLevels(
Labels$Genotype$Genotype,
Labels$Sex$Sex,
Labels$LifeStage$LifeStage,
debug = debug,
len = 3
),
anova = TRUE,
debug = debug
)
),
#####################################################################
################ Sex interactions
"Sex FvKO estimate" =
modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex,
variable = CombineLevels(
paste0("Sex", Labels$Sex$Female),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"Sex FvKO standard error" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex,
variable = CombineLevels(
paste0("Sex", Labels$Sex$Female),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Std.Error",
debug = debug
),
"Sex FvKO p-value" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex,
variable = CombineLevels(
paste0("Sex", Labels$Sex$Female),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
debug = debug
),
"Sex FvKO effect size" = object$output$"Effect sizes"[[paste(Labels$Genotype$Genotype, Labels$Sex$Female, sep = "_")]],
#####################################################################
"Sex MvKO estimate" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex,
variable = CombineLevels(
paste0("Sex", Labels$Sex$Male),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"Sex MvKO standard error" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex,
variable = CombineLevels(
paste0("Sex", Labels$Sex$Male),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Std.Error",
debug = debug
),
"Sex MvKO p-value" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex,
variable = CombineLevels(
paste0("Sex", Labels$Sex$Male),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
debug = debug
),
"Sex MvKO effect size" = object$output$"Effect sizes"[[paste(Labels$Genotype$Genotype, Labels$Sex$Male, sep = "_")]],
#####################################################################
################ LifeStage interaction
"LifeStage EvKO estimate" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_LifeStage,
variable = CombineLevels(
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Early),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"LifeStage EvKO standard error" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_LifeStage,
variable = CombineLevels(
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Early),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Std.Error",
debug = debug
),
"LifeStage EvKO p-value" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_LifeStage,
variable = CombineLevels(
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Early),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
debug = debug
),
"LifeStage EvKO effect size" = object$output$"Effect sizes"$Genotype_Early,
#####################################################################
"LifeStage LvKO estimate" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_LifeStage,
variable = CombineLevels(
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Late),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"LifeStage LvKO standard error" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_LifeStage,
variable = CombineLevels(
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Late),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Std.Error",
debug = debug
),
"LifeStage LvKO p-value" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_LifeStage,
variable = CombineLevels(
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Late),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
debug = debug
),
"LifeStage LvKO effect size" = object$output$"Effect sizes"$Genotype_Late,
#####################################################################
################ Sex LifeStage Genotype interactions
# 1.
"LifeStageSexGenotype FvEvKO estimate" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Female),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Early),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"LifeStageSexGenotype FvEvKO standard error" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Female),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Early),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Std.Error",
debug = debug
),
"LifeStageSexGenotype FvEvKO p-value" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Female),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Early),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
debug = debug
),
"LifeStageSexGenotype FvEvKO effect size" = object$output$"Effect sizes"$"Genotype_Female Early",
# 2.
"LifeStageSexGenotype MvEvKO estimate" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Male),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Early),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"LifeStageSexGenotype MvEvKO standard error" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Male),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Early),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Std.Error",
debug = debug
),
"LifeStageSexGenotype MvEvKO p-value" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Male),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Early),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
debug = debug
),
"LifeStageSexGenotype MvEvKO effect size" = object$output$"Effect sizes"$"Genotype_Male Early",
# 3.
"LifeStageSexGenotype FvLvKO estimate" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Female),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Late),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"LifeStageSexGenotype FvLvKO standard error" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Female),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Late),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Std.Error",
debug = debug
),
"LifeStageSexGenotype FvLvKO p-value" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Female),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Late),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
debug = debug
),
"LifeStageSexGenotype FvLvKO effect size" = object$output$"Effect sizes"$"Genotype_Female Late",
# 4.
"LifeStageSexGenotype MvLvKO estimate" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Male),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Late),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Value",
debug = debug,
ci_display = TRUE
),
"LifeStageSexGenotype MvLvKO standard error" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Male),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Late),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
what = "Std.Error",
debug = debug
),
"LifeStageSexGenotype MvLvKO p-value" = modelSummaryPvalueExtract(
x = object$output$SplitModels$Genotype_Sex.LifeStage,
variable = CombineLevels(
paste0(Labels$Sex$Sex, Labels$Sex$Male),
paste0(Labels$LifeStage$LifeStage, Labels$LifeStage$Late),
Labels$Genotype$Levels,
debug = debug
),
anova = FALSE,
debug = debug
),
"LifeStageSexGenotype MvLvKO effect size" = object$output$"Effect sizes"$"Genotype_Male Late",
################
"Classification tag" = NULL,
"Transformation" = NULL,
"Additional information" = addInfo
)
return(OpenStatsReportMM0)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.