R/runTestsMods.R

Defines functions runTestsMods

Documented in runTestsMods

#' Perform tests to test for associations between subgroups and
#' phenotypic variables
#'
#' Adds statistical tests results to the output of K2tax()
#' based on numeric and factor variables in info.
#' @param K2res An object of class K2. The output of K2tax().
#' @param infoClass A named vector denoted types of tests to run on
#' phenotypic variables (See K2preproc()).
#' @return An object of class K2.
#' @keywords clustering
#' @export
#' @examples
#' ## Read in ExpressionSet object
#' library(Biobase)
#' data(sample.ExpressionSet)
#'
#' ## Pre-process and create K2 object
#' K2res <- K2preproc(sample.ExpressionSet)
#'
#' ## Run K2 Taxonomer algorithm
#' K2res <- K2tax(K2res,
#'             stabThresh=0.5)
#'
#' infoClassVector <- c(sex='factor', score='numeric1')
#'
#' runTestsMods(K2res, infoClass=infoClassVector)
#'
#' head(getTestsModTable(K2res))
#'

runTestsMods <- function(K2res, infoClass=NULL) {

    ## Run checks
    .isK2(K2res)

    ## K2 algorithm
    if (length(K2results(K2res)) == 0) {
        "No results found. Please run K2tax() or runK2Taxonomer().\n"
    }

    ## Change meta data if new value is specied
    K2meta(K2res)$infoClass <- infoClass <- .checkK2(K2res, "infoClass",
        infoClass)

    ## Check K2 object
    k2Check <- .checkK2(K2res)

    K2results(K2res) <- lapply(K2results(K2res), function(x) {

        ## Get module results
        obs <- x$obs

        ## Run test on both
        obsRes <- lapply(obs, function(mod) {

            ## Run tests for different data types
            do.call(rbind, lapply(names(K2meta(K2res)$infoClass),
                function(colName) {

                    ## Get testID
                    testID <- K2meta(K2res)$infoClass[colName]

                    ## Create data.frame of meta variables
                    cohort <- K2meta(K2res)$cohort
                    if (is.null(cohort))
                        cohort <- "sampleID"
                    csDF <- K2info(K2res)[, c(cohort, colName)]
                    colnames(csDF) <- c("cohort", "value")
                    csDF$cat <- csDF$cohort %in% mod

                    ## Run test
                    if (testID == "factor")
                        out <- .runFisher2sided(csDF)
                    if (testID == "factor1")
                        out <- .runFisher1sided(csDF)
                    if (testID == "numeric")
                        out <- .runWilcox(csDF)
                    if (testID == "numeric1")
                        out <- .runWilcox(csDF, alternative="greater")
                    if (testID == "normal")
                        out <- .runTtest(csDF)
                    if (testID == "normal1")
                        out <- .runTtest(csDF, alternative="greater")

                    ## Add value ID
                    out <- data.frame(value=colName, out,
                        stringsAsFactors=FALSE)
                    return(out)

                }))
        })

        x$modTests <- obsRes
        return(x)
    })

    ## Calculate and merge FDR values
    pValueDF <- data.frame(pval=unlist(lapply(K2results(K2res),
        function(x) lapply(x$modTests, function(y) y$pval))))
    pValueDF$fdr <- p.adjust(pValueDF$pval, method="BH")
    pValueDF <- unique(pValueDF)
    K2results(K2res) <- lapply(K2results(K2res), function(x,
        pValueDF) {
        x$modTests <- lapply(x$modTests, function(y, pValueDF) {
            y <- merge(y, pValueDF)
            if (nrow(y) > 0) {
                y <- y[, c("value", "pval", "fdr", "stat", "df",
                    "obsMean", "altMean", "diffMean", "nhits",
                    "ncase", "nalt", "ndrawn", "hits", "test")]
            }
            return(y)
        }, pValueDF)
        return(x)
    }, pValueDF)

    return(K2res)
}
montilab/K2Taxonomer documentation built on Nov. 8, 2024, 2:36 a.m.