#' Extract table of enrichment results from 'K2' object
#'
#' Create table hyper- and single-sample enrichment results from 'K2' object.
#' @param K2res An object of class K2 or K2results().
#' @return A data.frame object with the following columns:
#' \itemize{
#' \item{category: }{The user-specified gene set names}
#' \item{node: }{The identifier of the partition}
#' \item{edge: }{Indication of which subgroup the gene was assigned at a
#' given partition}
#' \item{direction: }{The direction of coefficient for the assigned gene set}
#' \item{pval_hyper: }{The p-value of the hyperenrichment test comparing the
#' subgroup-assigned gene set to the user-specified gene set}
#' \item{fdr_hyper: }{The multiple hypothesis corrected FDR
#' (Benjamini-Hochberg) p-value of hyperenrichment, adjusted across all
#' partitions}
#' \item{nhits: }{The intersection of subgroup-assigned genes and the
#' user-specified gene set}
#' \item{ndrawn: }{The number of subgroup-assigned genes}
#' \item{ncats: }{The number of genes in the user-specified gene set}
#' \item{ntot: }{The background population of possible genes}
#' \item{pval_limma: }{The p-value estimated by the `limma` R package}
#' \item{fdr_limma: }{The multiple hypothesis corrected FDR
#' (Benjamini-Hochberg) p-value of differential analysis, adjusted across all
#' partitions}
#' \item{coef: }{The difference between the means of each subgroup at a given
#' partition}
#' \item{mean: }{The mean across all observations at the given partition}
#' \item{t: }{The test statistic estimated by the `limma` R package}
#' \item{B: }{The B-statistic estimated by the `limma` R package}
#' }
#' @references
#' \insertRef{reed_2020}{K2Taxonomer}
#' \insertRef{limma}{K2Taxonomer}
#' \insertRef{bh}{K2Taxonomer}
#' \insertRef{gsva}{K2Taxonomer}
#' @keywords clustering
#' @export
#' @examples
#' ## Read in ExpressionSet object
#' library(Biobase)
#' data(sample.ExpressionSet)
#'
#' ## Pre-process and create K2 object
#' K2res <- K2preproc(sample.ExpressionSet)
#'
#' ## Run K2 Taxonomer algorithm
#' K2res <- K2tax(K2res,
#' stabThresh=0.5)
#'
#' ## Run differential analysis on each partition
#' K2res <- runDGEmods(K2res)
#'
#' ## Create dummy set of gene sets
#' DGEtable <- getDGETable(K2res)
#' genes <- unique(DGEtable$gene)
#' genesetsMadeUp <- list(
#' GS1=genes[1:50],
#' GS2=genes[51:100],
#' GS3=genes[101:150])
#'
#' ## Run gene set hyperenrichment
#' K2res <- runGSEmods(K2res,
#' genesets=genesetsMadeUp,
#' qthresh=0.1)
#'
#' ## Run GSVA on genesets
#' K2res <- runGSVAmods(K2res,
#' ssGSEAalg='gsva',
#' ssGSEAcores=1,
#' verbose=FALSE)
#'
#' ## Run differential analysis on GSVA results
#' K2res <- runDSSEmods(K2res)
#'
#' head(getEnrichmentTable(K2res))
#'
getEnrichmentTable <- function(K2res) {
# Run checks
.isK2(K2res)
K2resList <- K2results(K2res)
## Format hyperenrichment table
EnrTable <- do.call(rbind, lapply(names(K2resList), function(x,
K2resList) {
## Get GSE tables
GSEtab <- NULL
if (!is.null(K2resList[[x]]$dge)) {
GSEtabList <- K2resList[[x]]$gse
## Add group informaiton and extract tables
GSEtab <- do.call(rbind, lapply(names(GSEtabList),
function(y) {
GSEsub <- GSEtabList[[y]]
if (nrow(GSEsub) > 0) {
GSEsub$node <- x ## Add node ID
GSEsub$edge <- gsub("g|_up|_down", "", y) ## Add group ID
GSEsub$direction <- gsub("g1_|g2_", "", y) ## Add dir
}
return(GSEsub)
}))
## Make pval and fdr column names unique
colnames(GSEtab)[colnames(GSEtab) %in% c("pval",
"fdr")] <- paste(colnames(GSEtab)[colnames(GSEtab) %in%
c("pval", "fdr")], "hyper", sep="_")
}
return(GSEtab)
}, K2resList))
if (nrow(EnrTable) == 0) {
EnrTable <- data.frame(category=NA, pval_hyper=NA,
fdr_hyper=NA, nhits=NA, ndrawn=NA, ncats=NA,
ntot=NA, hits=NA, node=NA, edge=NA, direction=NA)
}
## Format single-sample enrichment results
ssEnrTable <- do.call(rbind, lapply(names(K2resList), function(x,
K2resList) {
SSGSEAtab <- NULL
if (!is.null(K2resList[[x]]$dge)) {
## Get SSGSEA tables
SSGSEAtab <- K2resList[[x]]$dsse
## Add group information and extract tables
SSGSEAtab$node <- x
## Add direction information
SSGSEAtab$direction <- c("down", "up")[as.numeric(SSGSEAtab$t >
0) + 1]
## Make pval and fdr column names unique
colnames(SSGSEAtab)[colnames(SSGSEAtab) %in% c("pval",
"fdr")] <- paste(colnames(SSGSEAtab)[colnames(SSGSEAtab) %in%
c("pval", "fdr")], "limma", sep="_")
}
return(SSGSEAtab)
}, K2resList))
## Merge the two and sort by hyper p-value
EnrTable <- merge(EnrTable, ssEnrTable, all=TRUE)
EnrTable <- EnrTable[!is.na(EnrTable$category), ]
## Sort columns
EnrTable <- EnrTable[, c("category", "node", "edge", "direction",
"pval_hyper", "fdr_hyper", "nhits", "ndrawn", "ncats",
"ntot", "pval_limma", "fdr_limma", "coef", "mean", "t",
"B", "hits")]
## Sort by p-value
EnrTable <- EnrTable[order(EnrTable$pval_hyper), ]
rownames(EnrTable) <- NULL
return(EnrTable)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.