View source: R/fn_spongeffects_utility.R
Random_spongEffects | R Documentation |
build random classifiers
Random_spongEffects( sponge_modules, gene_expr, min.size = 10, bin.size = 100, max.size = 200, min.expression = 10, replace = F, method = "OE", cores = 1 )
sponge_modules |
result of define_modules() |
gene_expr |
Input expression matri |
min.size |
minimum module size (default: 10) |
bin.size |
bin size (default: 100) |
max.size |
maximum module size (default: 200) |
replace |
Possibility of keeping or removing (default) central genes in the modules (default: F) |
method |
Enrichment to be used (Overall Enrichment: OE or Gene Set Variation Analysis: GSVA) (default: OE) |
cores |
number of cores to be used to calculate entichment scores with gsva or ssgsea methods. Default 1 |
train_gene_expr |
expression data of train dataset, genenames must be in rownames |
test_gene_expr |
expression data of test dataset, genenames must be in rownames |
train_meta_data |
meta data of train dataset |
test_meta_data |
meta data of test dataset |
train_meta_data_type |
TCGA or METABRIC |
test_meta_data_type |
TCGA or METABRIC |
metric |
metric (Exact_match, Accuracy) (default: Exact_match) |
tunegrid_c |
defines the grid for the hyperparameter optimization during cross validation (caret package) (default: 1:100) |
n.folds |
number of folds to be calculated |
repetitions |
number of k-fold cv iterations (default: 3) |
min.expr |
minimum expression (default: 10) |
randomized prediction model Define random modules
A list with randomly defined modules and related enrichment scores
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.