#' Estimate (alpha) diversity measures
#'
#' Several functions for calculating (alpha) diversity indices, including
#' the \code{vegan} package options and some others.
#'
#' The available indices include the \sQuote{Coverage},
#' \sQuote{Faith's phylogenetic diversity}, \sQuote{Fisher alpha},
#' \sQuote{Gini-Simpson},
#' \sQuote{Inverse Simpson}, \sQuote{log-modulo skewness}, and \sQuote{Shannon}
#' indices. See details for more information and references.
#'
#' @param x a \code{\link{SummarizedExperiment}} object or
#' \code{\link{TreeSummarizedExperiment}}. The latter is recommended for
#' microbiome data sets and tree-based alpha diversity indices.
#'
#' @param tree A phylogenetic tree that is used to calculate 'faith' index.
#' If \code{x} is a \code{TreeSummarizedExperiment}, \code{rowTree(x)} is
#' used by default.
#'
#' @param assay.type the name of the assay used for
#' calculation of the sample-wise estimates.
#'
#' @param assay_name a single \code{character} value for specifying which
#' assay to use for calculation.
#' (Please use \code{assay.type} instead. At some point \code{assay_name}
#' will be disabled.)
#'
#' @param index a \code{character} vector, specifying the diversity measures
#' to be calculated.
#'
#' @param name a name for the column(s) of the colData the results should be
#' stored in. By default this will use the original names of the calculated
#' indices.
#'
#' @param tree.name a single \code{character} value for specifying which
#' rowTree will be used to calculate faith index.
#' (By default: \code{tree.name = "phylo"})
#'
#' @param tree_name Deprecated. Use \code{tree.name} instead.
#'
#' @param node.label NULL or a character vector specifying the links between rows and
#' node labels of \code{tree}. If a certain row is not linked with the tree, missing
#' instance should be noted as NA. When NULL, all the rownames should be found from
#' the tree. (By default: \code{node.label = NULL})
#'
#' @param node_lab Deprecated. Use \code{node.label} instead.
#'
#' @param BPPARAM A
#' \code{\link[BiocParallel:BiocParallelParam-class]{BiocParallelParam}}
#' object specifying whether calculation of estimates should be parallelized.
#'
#' @param ... optional arguments:
#' \itemize{
#' \item threshold: A numeric value in the unit interval,
#' determining the threshold for coverage index. By default,
#' \code{threshold} is 0.9.
#' \item quantile: Arithmetic abundance classes are evenly cut up to to
#' this quantile of the data. The assumption is that abundances higher than
#' this are not common, and they are classified in their own group.
#' By default, \code{quantile} is 0.5.
#' \item nclasses: The number of arithmetic abundance classes
#' from zero to the quantile cutoff indicated by \code{quantile}.
#' By default, \code{nclasses} is 50.
#' \item num_of_classes Deprecated. Use \code{nclasses} instead.
#' \item only.tips: A boolean value specifying whether to remove internal
#' nodes when Faith's index is calculated. When \code{only.tips=TRUE}, those
#' rows that are not tips of tree are removed.
#' (By default: \code{only.tips=FALSE})
#' }
#'
#' @return \code{x} with additional \code{\link{colData}} named \code{*name*}
#'
#' @details
#'
#' Alpha diversity is a joint quantity that combines elements or community
#' richness and evenness. Diversity increases, in general, when species richness
#' or evenness increase.
#'
#' By default, this function returns all indices.
#'
#' \itemize{
#'
#' \item 'coverage': Number of species needed to cover a given fraction of
#' the ecosystem (50 percent by default). Tune this with the threshold
#' argument.
#'
#' \item 'faith': Faith's phylogenetic alpha diversity index measures how
#' long the taxonomic distance is between taxa that are present in the sample.
#' Larger values represent higher diversity. Using this index requires
#' rowTree. (Faith 1992)
#'
#' If the data includes features that are not in tree's tips but in
#' internal nodes, there are two options. First, you can keep those features,
#' and prune the tree to match features so that each tip can be found from
#' the features. Other option is to remove all features that are not tips.
#' (See \code{only.tips} parameter)
#'
#' \item 'fisher': Fisher's alpha; as implemented in
#' \code{\link[vegan:diversity]{vegan::fisher.alpha}}. (Fisher et al. 1943)
#'
#' \item 'gini_simpson': Gini-Simpson diversity i.e. \eqn{1 - lambda},
#' where \eqn{lambda} is the
#' Simpson index, calculated as the sum of squared relative abundances.
#' This corresponds to the diversity index
#' 'simpson' in \code{\link[vegan:diversity]{vegan::diversity}}.
#' This is also called Gibbs–Martin, or Blau index in sociology,
#' psychology and management studies. The Gini-Simpson index (1-lambda)
#' should not be
#' confused with Simpson's dominance (lambda), Gini index, or
#' inverse Simpson index (1/lambda).
#'
#' \item 'inverse_simpson': Inverse Simpson diversity:
#' \eqn{1/lambda} where \eqn{lambda=sum(p^2)} and p refers to relative
#' abundances.
#' This corresponds to the diversity index
#' 'invsimpson' in vegan::diversity. Don't confuse this with the
#' closely related Gini-Simpson index
#'
#' \item 'log_modulo_skewness': The rarity index characterizes the
#' concentration of species at low abundance. Here, we use the skewness of
#' the frequency
#' distribution of arithmetic abundance classes (see Magurran & McGill 2011).
#' These are typically right-skewed; to avoid taking log of occasional
#' negative skews, we follow Locey & Lennon (2016) and use the log-modulo
#' transformation that adds a value of one to each measure of skewness to
#' allow logarithmization.
#'
#' \item 'shannon': Shannon diversity (entropy).
#'
#' }
#'
#' @references
#'
#' Beisel J-N. et al. (2003)
#' A Comparative Analysis of Diversity Index Sensitivity.
#' _Internal Rev. Hydrobiol._ 88(1):3-15.
#' \url{https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf}
#'
#' Bulla L. (1994)
#' An index of diversity and its associated diversity measure.
#' _Oikos_ 70:167--171
#'
#' Faith D.P. (1992)
#' Conservation evaluation and phylogenetic diversity.
#' _Biological Conservation_ 61(1):1-10.
#'
#' Fisher R.A., Corbet, A.S. & Williams, C.B. (1943)
#' The relation between the number of species and the number of individuals in
#' a random sample of animal population.
#' _Journal of Animal Ecology_ *12*, 42-58.
#'
#' Locey K.J. & Lennon J.T. (2016)
#' Scaling laws predict global microbial diversity.
#' _PNAS_ 113(21):5970-5975.
#'
#' Magurran A.E., McGill BJ, eds (2011)
#' Biological Diversity: Frontiers in Measurement and Assessment.
#' (Oxford Univ Press, Oxford), Vol 12.
#'
#' Smith B. & Wilson JB. (1996)
#' A Consumer's Guide to Diversity Indices.
#' _Oikos_ 76(1):70-82.
#'
#' @seealso
#' \code{\link[scater:plotColData]{plotColData}}
#' \itemize{
#' \item \code{\link[=estimateRichness]{estimateRichness}}
#' \item \code{\link[=estimateEvenness]{estimateEvenness}}
#' \item \code{\link[=estimateDominance]{estimateDominance}}
#' \item \code{\link[vegan:diversity]{diversity}}
#' \item \code{\link[vegan:specpool]{estimateR}}
#' }
#'
#' @name .estimate_diversity
#' @noRd
#'
#' @examples
#' data(GlobalPatterns)
#' tse <- GlobalPatterns
#'
#' # All index names as known by the function
#' index <- c("shannon","gini_simpson","inverse_simpson", "coverage", "fisher",
#' "faith", "log_modulo_skewness")
#'
#' # Corresponding polished names
#' name <- c("Shannon","GiniSimpson","InverseSimpson", "Coverage", "Fisher",
#' "Faith", "LogModSkewness")
#'
#' # Calculate diversities
#' tse <- .estimate_diversity(tse, index = index)
#'
#' # The colData contains the indices with their code names by default
#' colData(tse)[, index]
#'
#' # Removing indices
#' colData(tse)[, index] <- NULL
#'
#' # 'threshold' can be used to determine threshold for 'coverage' index
#' tse <- .estimate_diversity(tse, index = "coverage", threshold = 0.75)
#' # 'quantile' and 'nclasses' can be used when
#' # 'log_modulo_skewness' is calculated
#' tse <- .estimate_diversity(tse, index = "log_modulo_skewness",
#' quantile = 0.75, nclasses = 100)
#'
#' # It is recommended to specify also the final names used in the output.
#' tse <- .estimate_diversity(tse,
#' index = c("shannon", "gini_simpson", "inverse_simpson", "coverage",
#' "fisher", "faith", "log_modulo_skewness"),
#' name = c("Shannon", "GiniSimpson", "InverseSimpson", "Coverage",
#' "Fisher", "Faith", "LogModSkewness"))
#' # The colData contains the indices by their new names provided by the user
#' colData(tse)[, name]
#'
#' # Compare the indices visually
#' pairs(colData(tse)[, name])
#'
#' # Plotting the diversities - use the selected names
#' library(scater)
#' plotColData(tse, "Shannon")
#' # ... by sample type
#' plotColData(tse, "Shannon", "SampleType")
#' \donttest{
#' # combining different plots
#' library(patchwork)
#' plot_index <- c("Shannon","GiniSimpson")
#' plots <- lapply(plot_index,
#' plotColData,
#' object = tse,
#' x = "SampleType",
#' colour_by = "SampleType")
#' plots <- lapply(plots,"+",
#' theme(axis.text.x = element_text(angle=45,hjust=1)))
#' names(plots) <- plot_index
#' plots$Shannon + plots$GiniSimpson + plot_layout(guides = "collect")
#' }
NULL
.estimate_diversity <- function(
x, assay.type = assay_name, assay_name = "counts",
index = c(
"coverage", "faith", "fisher", "gini_simpson", "inverse_simpson",
"log_modulo_skewness", "shannon"),
name = index, BPPARAM = SerialParam(), ...){
# Check index
supported_index <- c(
"coverage", "faith", "fisher", "gini_simpson", "inverse_simpson",
"log_modulo_skewness", "shannon")
index_string <- paste0(
"'", paste0(supported_index, collapse = "', '"), "'")
if ( !all(index %in% supported_index) || !(length(index) > 0)) {
stop("'", paste0(
"'index' must be from the following options: '", index_string),
"'", call. = FALSE)
}
# Check name
if(!.is_non_empty_character(name) || length(name) != length(index)){
stop("'name' must be a non-empty character value and have the ",
"same length as 'index'.",
call. = FALSE)
}
# Check assay and check that vegan package is available since it is
# required in some of the diversity calculations.
.check_assay_present(assay.type, x)
#
# Calculate specified diversity indices
dvrsts <- BiocParallel::bplapply(
index,
.get_diversity_values,
x = x,
mat = assay(x, assay.type),
BPPARAM = BPPARAM,
...)
# Add them to colData
x <- .add_values_to_colData(x, dvrsts, name)
return(x)
}
################################################################################
.estimate_faith <- function(
x, mat, tree = NULL, tree.name = "phylo", node.label = node_lab,
node_lab = NULL, ...){
# Input check
# If tree is NULL, then we must have TreeSE object that has rowTree
if( is.null(tree) &&
!(is(x, "TreeSummarizedExperiment") && !is.null(rowTree(x))) ){
stop("'tree' must be provided.", call. = FALSE)
}
# If tree is not specified, then we get rowTree
if( is.null(tree) ){
tree <- rowTree(x, tree.name)
# When we get rowTree, we know the linking between rows and nodes.
node.label <- rowLinks(x)[ , "nodeLab" ]
node.label[ rowLinks(x)[, "whichTree"] != tree.name ] <- NA
}
# Check that tree is correct
if( is.null(tree) || is.null(tree$edge.length) ){
stop(
"'tree' is NULL or it does not have any branches. ",
"The Faith's alpha diversity index is not possible to ",
"calculate.", call. = FALSE)
}
# Check that node.label is NULL or it specifies links between rownames and
# node labs
if( !( is.null(node.label) ||
is.character(node.label) && length(node.label) == nrow(x) ) ){
stop(
"'node.label' must be NULL or a vector specifying links between ",
"rownames and node labs of 'tree'.",
call. = FALSE)
}
# Subset rows of the assay to correspond node_labs (if there are any NAs
# in node labels)
if( !is.null(node.label) && any(is.na(node.label)) ){
warning(
"The tree named does not include all the ",
"rows. 'x' is subsetted.", call. = FALSE)
mat <- mat[ !is.na(node.label), ]
node.label <- node.label[ !is.na(node.label) ]
}
# If there are node labels (any TreeSE should have because they are rowLinks
# by default), rename the features in matrix to match with labels found in
# tree.
if( !is.null(node.label) ){
rownames(mat) <- node.label
}
# To calculate faith, the assay must have rownames. TreeSE has always
# rownames at this point, but if the object is SE, it might be that it is
# missing rownames.
if( is.null(rownames(mat)) ){
stop("'x' must have rownames.", call. = FALSE)
}
# Calculates Faith index
res <- .calc_faith(mat, tree, ...)
return(res)
}
.calc_shannon <- function(mat, ...){
vegan::diversity(t(mat), index="shannon")
}
# NOTE: vegan::diversity(x, index = "simpson")
# gives Simpson diversity, also called Gini-Simpson
# index: 1-lambda, where lambda is the Simpson index
# (lambda). This may cause confusion if your familiarity
# with diversity indices is limited.
# Moreover, Simpson's lambda is simply the
# squared sum of relative abundances so we can
# just use that for clarity and simplicity.
#.get_simpson <- function(x, ...){
.simpson_lambda <- function(mat, ...){
# Convert table to relative values
rel <- .calc_rel_abund(mat)
# Squared sum of relative abundances
colSums2(rel^2)
}
.calc_gini_simpson <- function(mat, ...){
1 - .simpson_lambda(mat, ...)
}
.calc_inverse_simpson <- function(mat, ...){
1 / .simpson_lambda(mat, ...)
}
.calc_coverage <- function(mat, threshold = 0.9, ...){
# Threshold must be a numeric value between 0-1
if( !( is.numeric(threshold) && (threshold >= 0 && threshold <= 1) ) ){
stop("'threshold' must be a numeric value between 0-1.",
call. = FALSE)
}
# Convert table to relative values
rel <- .calc_rel_abund(mat)
# Number of groups needed to have threshold (e.g. 50 %) of the
# ecosystem occupied
coverage <- apply(rel, 2, function(x) {
min(which(cumsum(rev(sort(x/sum(x)))) >= threshold))
})
names(coverage) <- colnames(rel)
coverage
}
.calc_fisher <- function(mat, ...){
vegan::fisher.alpha(t(mat))
}
.calc_faith <- function(mat, tree, only.tips = FALSE, ...){
# Input check
if( !.is_a_bool(only.tips) ){
stop("'only.tips' must be TRUE or FALSE.", call. = FALSE)
}
#
# Remove internal nodes if specified
if( only.tips ){
mat <- mat[ rownames(mat) %in% tree$tip.label, ]
}
# To ensure that the function works with NA also, convert NAs to 0.
# Zero means that the taxon is not present --> same as NA (no information)
mat[ is.na(mat) ] <- 0
# Gets vector where number represent nth sample
samples <- seq_len(ncol(mat))
# Repeats taxa as many times there are samples, i.e. get all the
# taxa that are analyzed in each sample.
taxa <- rep(rownames(mat), length(samples))
# Gets those taxa that are present/absent in each sample.
# Gets one big list that combines
# taxa from all the samples.
present_combined <- taxa[ mat[, samples] > 0 ]
# Gets how many taxa there are in each sample.
# After that, determines indices of samples' first taxa with cumsum.
split_present <- as.vector(cumsum(colSums(mat > 0)))
# Determines which taxa belongs to which sample by first determining
# the splitting points,
# and after that giving every taxa number which tells their sample.
split_present <- as.factor(cumsum((seq_along(present_combined)-1) %in%
split_present))
# Assigns taxa to right samples based on their number that they got from
# previous step, and deletes unnecessary names.
present <- unname(split(present_combined, split_present))
# If there were samples without any taxa present/absent, the length of the
# list is not the number of samples since these empty samples are missing.
# Add empty samples as NULL.
names(present) <- names(which(colSums2(mat) > 0))
present[names(which(colSums2(mat) == 0))] <- list(NULL)
present <- present[colnames(mat)]
# Assign NA to all samples
faiths <- rep(NA,length(samples))
# If there are no taxa present, then faith is 0
ind <- lengths(present) == 0
faiths[ind] <- 0
# If there are taxa present
ind <- lengths(present) > 0
# Loop through taxa that were found from each sample
faiths_for_taxa_present <- lapply(present[ind], function(x){
# Trim the tree
temp <- .prune_tree(tree, x, ...)
# Sum up all the lengths of edges
temp <- sum(temp$edge.length)
return(temp)
})
faiths_for_taxa_present <- unlist(faiths_for_taxa_present)
faiths[ind] <- faiths_for_taxa_present
return(faiths)
}
.calc_log_modulo_skewness <- function(mat, quantile = 0.5,
nclasses = num_of_classes, num_of_classes = 50, ...){
# quantile must be a numeric value between 0-1
if( !( is.numeric(quantile) && (quantile >= 0 && quantile <= 1) ) ){
stop("'quantile' must be a numeric value between 0-1.",
call. = FALSE)
}
# nclasses must be a positive numeric value
if( !( is.numeric(nclasses) && nclasses > 0 ) ){
stop("'nclasses' must be a positive numeric value.",
call. = FALSE)
}
# Determine the quantile point.
quantile_point <- quantile(max(mat), quantile)
# Tabulate the arithmetic abundance classes. Use the same classes
# for all samples for consistency
cutpoints <- c(seq(0, quantile_point, length=nclasses), Inf)
# Calculates sample-wise frequencies. How many taxa in each interval?
freq_table <- table(cut(mat, cutpoints), col(mat))
# Calculates the skewness of frequency table. Returns skewness for each
# sample
r <- .calc_skewness(freq_table)
# Return log-modulo
log(1 + r)
}
#' @importFrom DelayedMatrixStats rowSums2 rowMeans2
.calc_skewness <- function(x) {
# Transposes the table
x <- t(x)
# Each value is subtracted by sample-wise mean, which is raised to the
# power of 3.
# Then the sample-wise sum is taken from these values.
numerator <- rowSums2((x - rowMeans2(x))^3)
# Sample-wise sum is divided by number of taxa that are not NA.
numerator <- numerator/rowSums2(!is.na(x))
# Each value is subtracted by sample-wise mean, which is raises to the
# power of 2.
# Then the sample-wise sum is taken from these values.
denominator <- rowSums2((x - rowMeans2(x))^2)
# Sample-wise sum is divided by number of taxa that are not NA. Then
# these values
# are raised to the power of 3/2.
denominator <- (denominator/rowSums2(!is.na(x)))^(3/2)
# Result
result <- numerator/denominator
return(result)
}
#' @importFrom SummarizedExperiment assay assays
.get_diversity_values <- function(index, x, mat, ...){
FUN <- switch(index,
shannon = .calc_shannon,
gini_simpson = .calc_gini_simpson,
inverse_simpson = .calc_inverse_simpson,
coverage = .calc_coverage,
fisher = .calc_fisher,
faith = .estimate_faith,
log_modulo_skewness = .calc_log_modulo_skewness
)
res <- FUN(x = x, mat = mat, ...)
res <- unname(res)
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.