R/mpathSim.R

Defines functions pathSims_matrix mpathSim

Documented in mpathSim

# mpathSim ####
#' Calculates the Dice similarity between pathways
#'
#' Calculates the similarity between several pathways using dice similarity score.
#' If one needs the matrix of similarities between pathways set the argument
#' methods to `NULL`.
#' @param pathways Pathways to calculate the similarity for
#' @param info A list of genes and the pathways they are involved or a
#' GeneSetCollection object
#' @param method To combine the scores of each pathway, one of `c("avg",
#' "max", "rcmax", "rcmax.avg", "BMA")`, if NULL returns the matrix of
#' similarities.
#' @param ... Other arguments passed to [combineScoresPar()]
#' @return The similarity between those pathways or all the similarities
#' between each comparison.
#' @note `pathways` accept named characters, and then the output will have
#' the names
#' @seealso [pathSim()] For single pairwise comparison.
#' [conversions()] To convert the Dice similarity to Jaccard similarity
#' @export
#' @examples
#' if (require("reactome.db")) {
#'     genes.react <- as.list(reactomeEXTID2PATHID)
#'     (pathways <- sample(unique(unlist(genes.react)), 10))
#'     mpathSim(pathways, genes.react, NULL)
#'     named_paths <- structure(
#'         c("R-HSA-112310", "R-HSA-112316", "R-HSA-112315"),
#'         .Names = c(
#'             "Neurotransmitter Release Cycle",
#'             "Neuronal System",
#'             "Transmission across Chemical Synapses"
#'         )
#'     )
#'     mpathSim(named_paths, genes.react, NULL)
#'     many_pathways <- sample(unique(unlist(genes.react)), 152)
#'     mpathSim(many_pathways, genes.react, "avg")
#' } else {
#'     warning("You need reactome.db package for this example")
#' }
mpathSim <- function(pathways, info, method = NULL, ...) {
  if (length(unique(pathways)) == 1) {
    stop(
      "Introduce several unique pathways!\n",
      "If you want to calculate one similarity ",
      "between pathways use pathSim"
    )
  }

  if (!all(is.character(pathways))) {
    stop("The input pathways should be characters")
  }
  nam <- names(pathways)
  pathways <- unique(pathways)

  if (!is.list(info)) {
    stop("info should be a list. See documentation.")
  }

  if (any(!pathways %in% unlist(info, use.names = FALSE))) {
    warning("Some pathways are not in the list provided.")
  }

  # If the number of pathways is quite big uses matrix properties
  # Calculate just the pathways needed
  if (length(pathways) >= 150) {

    # Keep only the pathways of interest
    pathways2genes <- inverseList(info)
    keep <- pathways %in% unique(unlist(info, use.names = FALSE))
    info <- inverseList(pathways2genes[pathways[keep]])

    sim <- pathSims_matrix(info)
  } else {
    # Invert the list
    pathways2genes <- inverseList(info)

    # Extract the gene ids for each pathway
    g1 <- lapply(pathways, function(x) {
      pathways2genes[[x]]
    })
    names(g1) <- pathways
    g2 <- g1

    # Calculate similarities
    sim <- outer(g1, g2, vdiceSim)
  }

  if (!is.null(nam)) {
    if (length(nam) != nrow(sim)) {
      warning("Omitting pathway names: duplicated names")
    } else {
      dimnames(sim) <- list(nam, nam)
    }
  }

  # Calculate the similarity between the two genes
  if (is.null(method)) {
    return(sim)
  } else {
    combineScoresPar(sim, method, ... = ...)
  }
}


#' Creates the incidence matrix
#'
#' Given a list of pathways and its genes creates an incidence matrix.
#' @note Designed to be easier to work with list and GeneSetCollection
#' @param x A list
#' @return A matrix with pathways as rows and genes in columns.
#' @author LluĂ­s Revilla
#' @keywords internal
setMethod(
  "incidence",
  signature(x = "list"),
  function(x) {
    # Remove empty genes
    nas <- sapply(x, function(y) {
      all(is.na(y))
    })
    lge2 <- x[!nas]
    # Extract all pathways
    pathways <- unique(unlist(lge2, use.names = FALSE))
    # Create the incidence matrix
    mat <- as.matrix(sapply(names(lge2), function(y) {
      ifelse(pathways %in% lge2[[y]], TRUE, FALSE)
    }))
    rownames(mat) <- pathways
    mat
  }
)

# pathSims_matrix ####
# Uses linear algebra to speed the caluclations
# x is a list of genes to pathways or a GeneSetCollection
# Omits pathways with no gene
#' @importMethodsFrom GSEABase incidence
#' @import GSEABase
#' @keywords internal
pathSims_matrix <- function(x) {
  mat <- incidence(x)

  # Calculate genes in common between pathways
  overPath <- tcrossprod(mat)
  # Extract the genes per pathway
  genesPerPathway <- rowSums(mat)
  genesPerPathway <- matrix(genesPerPathway, ncol(overPath), ncol(overPath))
  # Calculate the dice similarity
  2 * overPath / (t(genesPerPathway) + genesPerPathway)
}

#' @describeIn mpathSim Calculates the similarity between the provided pathways
#' of the GeneSetCollection using `combineScoresPar`
#' @export mpathSim
setMethod(
  "mpathSim",
  c(info = "GeneSetCollection", pathways = "character", method = "ANY"),
  function(pathways, info, method = NULL, ...) {
    if (length(unique(pathways)) == 1) {
      stop(
        "Introduce several unique pathways!\n",
        "If you want to calculate one similarity ",
        "between pathways use pathSim"
      )
    }

    if (!all(is.character(pathways))) {
      stop("The input pathways should be characters")
    }
    pathways <- unique(pathways)

    if (any(!pathways %in% names(info))) {
      warning("Some pathways are not in the GeneSetCollection provided.")
      m <- matrix(
        nrow = length(pathways), ncol = length(pathways),
        dimnames = list(pathways, pathways)
      )
      pathways <- pathways[pathways %in% names(info)]

      sim <- pathSims_matrix(info[pathways])

      sim <- AintoB(sim, m)
    } else {
      sim <- pathSims_matrix(info[pathways])
    }



    if (is.null(method)) {
      return(sim)
    } else {
      combineScoresPar(sim, method, ... = ...)
    }
  }
)

#' @describeIn mpathSim Calculates all the similarities of the
#' GeneSetCollection and combine them using `combineScoresPar`
#' @export mpathSim
setMethod(
  "mpathSim",
  c(info = "GeneSetCollection", pathways = "missing"),
  function(pathways, info, method = NULL, ...) {
    sim <- pathSims_matrix(info)

    if (is.null(method)) {
      return(sim)
    } else {
      combineScoresPar(sim, method, ... = ...)
    }
  }
)

#' @describeIn mpathSim Calculates all the similarities of the list and
#' combine them using `combineScoresPar`
#' @export mpathSim
setMethod(
  "mpathSim",
  c(info = "list", pathways = "missing"),
  function(pathways, info, method = NULL, ...) {
    sim <- pathSims_matrix(info)

    if (is.null(method)) {
      return(sim)
    } else {
      combineScoresPar(sim, method, ... = ...)
    }
  }
)

#' @describeIn mpathSim Calculates all the similarities of the list
#' @export mpathSim
setMethod(
  "mpathSim",
  c(info = "list", pathways = "missing", method = "missing"),
  function(pathways, info, method = NULL, ...) {
    sim <- pathSims_matrix(info)

    return(sim)
  }
)
llrs/BioCor documentation built on Dec. 26, 2024, 11:52 a.m.