R/PureCN-internal.R

Defines functions .getSeqlevelsStyle .getExonLrs .calculate_allelic_imbalance .imputeBetaBin .calculate_ccf .estimateContamination .postprocessLogRatios .calcFractionBalanced .checkArgs .getCentromerePositions .gcGeneToCoverage .checkGCBias .calcGCmetric .logFooter .logHeader .stopRuntimeError .stopUserError .getChrHash .add.chr.name .strip.chr.name .createFakeLogRatios .robustSd .calcPuritySomaticVariants .removeOutliers .sampleOffset .sampleError .sampleOffsetFast .rankResults .calcComplexityCopyNumber .calcLlikSegmentExonLrs .optimizeGrid .get2DPurityGrid .checkSymbolsChromosome .coverageHasCounts .extractCountMatrix .getGeneCalls .flagResults .getGoF .getFractionLoh .flagResult .isRareKaryotype .appendComment .findLocalMinima .filterDuplicatedCandidates .filterDuplicatedResults .failedNonAberrant .checkParameters .checkFraction .extractMLSNVState .calcSNVLLik .calcMsSegment .calcMsSegmentC .calcLlikSegmentSubClonal .calcLlikSegmentClonal .calcLlikSegment

# Make CMD check happy
globalVariables(names=c("Gene", "LR", "chrom", "seg.id", "seg.length",
"seg.mean", "C.flagged", "weights"))

# calculates the log-likelihood of a segment, given log-ratios, the
# log ratio standard deviation, purity, copy number and ploidy.
# for sub-clonal alterations, it uses a uniform distribution, otherwise
# multiple gaussians for all tested copy numbers. 
.calcLlikSegment <- function(subclonal, lr, sd.seg, p, Ci, total.ploidy, 
max.exon.ratio) {
    if (subclonal) {
        return(.calcLlikSegmentSubClonal(lr, max.exon.ratio))
    }

    .calcLlikSegmentClonal(lr, sd.seg, p, Ci, total.ploidy)
}
.calcLlikSegmentClonal <- function(lr, sd.seg, p, Ci, total.ploidy) {
    sum(dnorm(lr, mean = log2((p * Ci + (1 - p) * 2)/total.ploidy), 
        sd = sd.seg, log = TRUE))
}
.calcLlikSegmentSubClonal <- function(lr, max.exon.ratio) {
    sum(dunif(
        x =  vapply(2^lr, function(y) min(y, max.exon.ratio), double(1)), 
        min = 0, max = max.exon.ratio, log = TRUE))
}
# Previously calculated likelihood scores do not take the segmentation into
# account. This will find the most likely segment minor copy number
.calcMsSegmentC <- function(yy, test.num.copy, Ci, prior.K, mapping.bias.ok, 
    seg.id, min.variants.segment) {
    prior.M <- list(0.2,0.15,c(0.1,0.25),c(0.1,0.3),c(0.1,0.2,0.55))
    prior.M <- c(list(1), lapply(prior.M, function(x) c(x, 1-sum(x))))
    max.M <- floor(Ci / 2)
    idx.germline <- test.num.copy + length(test.num.copy) + 1
    idx.somatic <- test.num.copy + 1
    variant.ok <- mapping.bias.ok & is.finite(apply(yy, 1, max))
    yys <- lapply(0:max.M, function(Mi) {
        for (i in test.num.copy) {
            n.cases.germ <- ifelse(Mi==Ci-Mi,1,2)
            tmp <- unique(c(0, 1,Mi, Ci-Mi))
            n.cases.somatic <- length(tmp)
            Cx <- max(i,Ci)

            if (i!=Mi && i!=Ci - Mi) {
                yy[,idx.germline[i+1]] <- yy[,idx.germline[i+1]] + log(1-prior.K) - log(Cx + 1 - n.cases.germ)

                # allow somatic mutations always have M=1
                if (i <= 1) {
                    yy[,idx.somatic[i+1]] <- yy[,idx.somatic[i+1]] + log(prior.K) - log(n.cases.somatic)
                } else {
                    yy[,idx.somatic[i+1]] <- yy[,idx.somatic[i+1]] +
                        log(1-prior.K) - log(Cx + 1 - n.cases.somatic)
                } 
            } else {
                yy[, idx.germline[i + 1]] <- yy[, idx.germline[i + 1]] + log(prior.K) - log(n.cases.germ)
                yy[, idx.somatic[i + 1]] <- yy[, idx.somatic[i + 1]] + log(prior.K) - log(n.cases.somatic)
            }
        }
        yy
    })
    # if not enough variants in segment, flag
    flag <- sum(variant.ok) < min.variants.segment
    if (!sum(variant.ok)) {
        # still use them to avoid erroring out, but we will ignore the output because
        # of flagging
        variant.ok <- rep(TRUE, length(variant.ok))
    }

    likelihoodScores <- vapply(yys, function(x) {
        sum(apply(x[variant.ok, , drop = FALSE], 1, max))
    }, double(1))

    best <- which.max(likelihoodScores)
    # this should not happen...
    if (!length(best)) {
        flag <- TRUE
        best <- 1
    }
    # transform and scale
    likelihoodScores <- exp(likelihoodScores - likelihoodScores[best])
    posterior <- likelihoodScores[best] / sum(likelihoodScores, na.rm = TRUE)
    if (is.na(posterior) || posterior < 0.5) flag <- TRUE

    list(best = yys[[best]], M = test.num.copy[best], flag = flag, posterior = posterior)
}

# calculate likelihood scores for all possible minor copy numbers
.calcMsSegment <- function(xxi, test.num.copy, opt.C, prior.K, mapping.bias.ok, 
    seg.id, min.variants.segment) {
    lapply(seq_along(xxi), function(i).calcMsSegmentC(xxi[[i]], test.num.copy,
c(test.num.copy, round(opt.C))[i], prior.K, mapping.bias.ok, seg.id, min.variants.segment))
}    

.calcSNVLLik <- function(vcf, tumor.id.in.vcf, ov, p, test.num.copy, 
    C.likelihood, C, opt.C, median.C, snv.model, snv.lr, 
    sampleid = NULL, cont.rate = 0.01, prior.K, max.coverage.vcf, non.clonal.M,
    model.homozygous = FALSE, error = 0.001, max.mapping.bias = 0.8, max.pon,
    min.variants.segment) {
    
    .dbeta <- function(x, shape1, shape2, log, size, rho) dbeta(x=x, 
        shape1 = shape1, shape2 = shape2, log = log)
    if (snv.model == "betabin") {
        .dbeta <- function(x, shape1, shape2, log, size, rho) {
            prob <- ((shape1-1)/(shape1+shape2-2))
            dbetabinom(x = round(x * size),prob = prob, 
                size = size, rho = rho, log = TRUE)
         }
    }
    prefix <- .getPureCNPrefixVcf(vcf)
    prior.somatic <- info(vcf)[[paste0(prefix, "PR")]]
    prior.cont <- ifelse(prior.somatic < 0.1, cont.rate, 0)
    prior.somatic <- prior.somatic - (prior.cont*prior.somatic)
    priorHom <- if (model.homozygous) -log(3) else log(0)

    haploid.penalty <- 0
    
    if (median.C < 1.1) {
        haploid.penalty <- 2
    }
    
    subclonal <- apply(C.likelihood[queryHits(ov), ], 1, which.max) == ncol(C.likelihood)
    
    seg.idx <- which(seq_len(nrow(C.likelihood)) %in% queryHits(ov))

    ar_all <- unlist(geno(vcf)$FA[, tumor.id.in.vcf])
    bias_all <- info(vcf)[[paste0(prefix, "MBB")]]
    dp_all <- unlist(geno(vcf)$DP[, tumor.id.in.vcf])
    impute <- .imputeBetaBin(dp_all, bias_all, 
        mu = info(vcf)[[paste0(prefix, "MBMU")]],
        rho = info(vcf)[[paste0(prefix, "MBRHO")]])
    rho_all <- impute$rho
    ar_all <- ar_all / (impute$mu * 2)
    ar_all[ar_all > 1] <- 1
    
    if (snv.model!="betabin") dp_all[dp_all>max.coverage.vcf] <- max.coverage.vcf

    # Fit variants in all segments
    xx <- lapply(seg.idx, function(i) {
        # classify germline vs somatic
        idx <- subjectHits(ov)[queryHits(ov) == i]
        
        shape1 <- ar_all[idx] * dp_all[idx] + 1
        shape2 <- (1 - ar_all[idx]) * dp_all[idx] + 1
        mInf_all <- log(double(length(shape1)))

        list(vcf.ids=idx, likelihoods=lapply(seq(ncol(C.likelihood)), function(k) {
            Ci <- c(test.num.copy, opt.C[i])[k]
            priorM <- log(max(Ci,1) + 1 + haploid.penalty)
            
            skip <- test.num.copy > Ci | C.likelihood[i, k] <= 0

            p.ar <- lapply(c(0, 1), function(g) {
                cns <- test.num.copy
                if (!g) cns[1] <- non.clonal.M
                dbetax <- (p * cns + g * (1-p)) / (p * Ci + 2 * (1-p))
                l <- lapply(seq_along(test.num.copy), function(j) {
                    if (skip[j]) return(mInf_all)
                    .dbeta(x = dbetax[j],
                    shape1 = shape1,
                    shape2 = shape2, log = TRUE, size = dp_all[idx],
                    rho = rho_all[idx]) - priorM
                })
                do.call(cbind,l)
            })
            
            p.ar.cont.1 <- .dbeta(x = (p * Ci + 2 * (1 - p - cont.rate))/
                  (p * Ci + 2 * (1 - p)),shape1=shape1, shape2=shape2, 
                  log=TRUE, size=dp_all[idx], rho = rho_all[idx]) - priorM

            p.ar.cont.2 <- .dbeta(x = cont.rate / (p * Ci + 2 * (1 - p)), 
                  shape1 = shape1, shape2 = shape2, log = TRUE, 
                  size = dp_all[idx], rho = rho_all[idx]) - priorM

            # add prior probabilities for somatic vs germline
            p.ar[[1]] <- p.ar[[1]] + log(prior.somatic[idx])

            p.ar[[2]] <- p.ar[[2]] + log(1 - prior.somatic[idx])

            # contamination (either homozygous germline, or germline from 
            # other sample)

            p.ar[[3]] <- p.ar.cont.1 + log(prior.cont[idx])
            p.ar[[4]] <- p.ar.cont.2 + log(prior.cont[idx])

            # homozygous state
            p.ar[[5]] <- dbinom(round((1 - ar_all[idx]) * dp_all[idx]),
                size = round(dp_all[idx]), prob = error / 3, log = TRUE) +
                priorHom + log(1 - prior.somatic[idx])
            do.call(cbind, p.ar)
        }))
    })
    
    tmp <- lapply(seq_along(xx),function(i) .calcMsSegment(xx[[i]]$likelihoods, 
               test.num.copy, opt.C[seg.idx[i]], prior.K, 
               mapping.bias.ok = info(vcf[xx[[i]]$vcf.ids])[[paste0(prefix, "MBB")]] >= max.mapping.bias &
                                 info(vcf[xx[[i]]$vcf.ids])[[paste0(prefix, "MBB")]] <= (2 - max.mapping.bias),
               seg.id = seg.idx[i], min.variants.segment))

    xx <- lapply(tmp, lapply, function(x) x$best)
    
    .extractValues <- function(tmp, field) {
        segmentValue <- sapply(seq_along(tmp), function(i) 
            tmp[[i]][[min(C[seg.idx[i]], max(test.num.copy))+1]][[field]])
        segmentValue <- unlist(sapply(seq_along(seg.idx), function(i) 
            rep(segmentValue[i], sum(seg.idx[i] == queryHits(ov)))))
    }
    # Get segment M's for each SNV
    segment.M <- .extractValues(tmp, "M")
    segment.Flag <- .extractValues(tmp, "flag")
    segment.Posterior <- .extractValues(tmp, "posterior")

    likelihoods <- do.call(rbind, 
        lapply(seq_along(xx), function(i) Reduce("+", 
            lapply(seq(ncol(C.likelihood)), function(j) 
                exp(xx[[i]][[j]]) * C.likelihood[seg.idx[i], j]))))

    colnames(likelihoods) <- c(paste("SOMATIC.M", test.num.copy, sep = ""), 
        paste("GERMLINE.M", test.num.copy, sep = ""), "GERMLINE.CONTHIGH", 
        "GERMLINE.CONTLOW", "GERMLINE.HOMOZYGOUS")
    
    vcf.ids <- do.call(c, lapply(seg.idx, function(i) 
        subjectHits(ov)[queryHits(ov) == i]))
    rownames(likelihoods) <- vcf.ids
    
    # for very high-level amplifications, all posteriors can be 0, so make sure
    # we get valid values here and flag those later.
    posteriors <- likelihoods/pmax(rowSums(likelihoods),.Machine$double.xmin)
    # this just adds a lot of helpful info to the SNV posteriors
    xx <- .extractMLSNVState(posteriors)
    
    posteriors <- cbind(
        as.data.frame(rowRanges(vcf[vcf.ids]), row.names=NULL)[, 1:3],
        ID = names(vcf[vcf.ids]),
        REF = as.character(ref(vcf[vcf.ids])),
        ALT = sapply(alt(vcf[vcf.ids]), function(x) 
                     paste(as.character(x), collapse=";")),
        posteriors,
        xx, 
        ML.C = C[queryHits(ov)],
        ML.M.SEGMENT = segment.M,
        M.SEGMENT.POSTERIOR = segment.Posterior,
        M.SEGMENT.FLAGGED = segment.Flag,
        row.names = NULL
    )
    
    posteriors$ML.AR <- (p * posteriors$ML.M + 
        ifelse(posteriors$ML.SOMATIC, 0, 1) * 
        (1 - p)) / (p * posteriors$ML.C + 2 * (1 - p))
    posteriors$ML.AR[posteriors$ML.AR > 1] <- 1 

    posteriors$AR <- unlist(geno(vcf[vcf.ids])$FA[, tumor.id.in.vcf])
    posteriors$AR.ADJUSTED <- NA
    posteriors$MAPPING.BIAS <- info(vcf[vcf.ids])[[paste0(prefix, "MBB")]]
    posteriors$AR.ADJUSTED <- pmin(1, posteriors$AR / posteriors$MAPPING.BIAS)
    # Extract LOH
    posteriors$ML.LOH <- (posteriors$ML.M == posteriors$ML.C | 
        posteriors$ML.M == 0 | posteriors$ML.C == 1)
    
    posteriors$CN.SUBCLONAL <- subclonal
    depth <-as.numeric(geno(vcf[vcf.ids])$DP[, tumor.id.in.vcf])
    ar <- posteriors$AR.ADJUSTED
    ar[!posteriors$ML.SOMATIC] <- NA

    m <-  t(apply(cbind(ar, depth,  posteriors$ML.C), 1, function(x) 
        .calculate_ccf(vaf = x[1], depth = x[2], purity = p, C = x[3])))

    posteriors$CELLFRACTION <- as.numeric(m[,1])
    posteriors$CELLFRACTION.95.LOWER <- as.numeric(m[,2])
    posteriors$CELLFRACTION.95.UPPER <- as.numeric(m[,3])
    ar <- posteriors$AR.ADJUSTED
    posteriors$ALLELIC.IMBALANCE <- .calculate_allelic_imbalance(
        vaf = posteriors$AR,
        depth = depth,
        max.coverage.vcf = max.coverage.vcf, 
        bias = posteriors$MAPPING.BIAS,
        mu = info(vcf[vcf.ids])[[paste0(prefix, "MBMU")]],
        rho = info(vcf[vcf.ids])[[paste0(prefix, "MBRHO")]])

    rm.snv.posteriors <- apply(likelihoods, 1, max)
    idx.ignore <- rm.snv.posteriors == 0 | is.na(rm.snv.posteriors) |
        posteriors$MAPPING.BIAS < max.mapping.bias |
        posteriors$MAPPING.BIAS > (2 - max.mapping.bias) |
        posteriors$start != posteriors$end

    posteriors$FLAGGED <- idx.ignore

    posteriors$log.ratio <- snv.lr[vcf.ids]
    posteriors$depth <- depth
    posteriors$prior.somatic <- prior.somatic[vcf.ids]
    posteriors$prior.contamination <- prior.cont[vcf.ids]
    posteriors$on.target <- info(vcf[vcf.ids])[[paste0(prefix, "OnTarget")]]
    posteriors$seg.id <- queryHits(ov)
    
    posteriors$pon.count <- info(vcf[vcf.ids])[[paste0(prefix, "MBPON")]]
    if (!is.null(posteriors$pon.count)) {
        idx.ignore <- idx.ignore | 
            (posteriors$pon.count > max.pon & posteriors$prior.somatic > 0.1)
        posteriors$FLAGGED <- idx.ignore
    }
    # change seqnames to chr
    colnames(posteriors)[1] <- "chr"    

    ret <- list(
        llik = sum(log(rm.snv.posteriors[!idx.ignore])) - sum(idx.ignore), 
        likelihoods = likelihoods, 
        posteriors = posteriors, 
        vcf.ids = vcf.ids, 
        posterior.contamination = 0)

    ret
}

.extractMLSNVState <- function(snv.posteriors) {
    # should not happen, but to avoid failure of which.max
    snv.posteriors[is.nan(snv.posteriors)] <- 0
    l1 <- apply(snv.posteriors, 1, which.max)
    xx <- do.call(rbind, strsplit(colnames(snv.posteriors)[l1], "\\."))
    xx[, 1] <- ifelse(xx[, 1] == "GERMLINE", FALSE, TRUE)
    xx[, 2] <- gsub("^M", "", xx[, 2])
    xx <- as.data.frame(xx, stringsAsFactors = FALSE)
    xx[, 1] <- as.logical(xx[, 1])
    xx[, 2] <- suppressWarnings(as.numeric(xx[, 2]))
    colnames(xx) <- c("ML.SOMATIC", "ML.M")
    # set sub-clonal (ML.M=0) to 1
    xx$ML.M[xx$ML.SOMATIC & !xx$ML.M] <- 1
    xx$POSTERIOR.SOMATIC <- apply(snv.posteriors[, grep("SOMATIC.M", 
        colnames(snv.posteriors))], 1, sum, na.rm=TRUE)
    xx[, c(1,3,2)]
}

.checkFraction <- function(x, name) {
    if (!is.numeric(x) || length(x) !=1 || 
        x < 0 || x > 1) {
        .stopUserError(name, " not within expected range or format.")
    }
}

.checkParameters <- function(test.purity, min.ploidy, max.ploidy, 
    max.non.clonal, max.homozygous.loss, sampleid, prior.K, 
    prior.contamination, prior.purity, iterations, min.gof, model.homozygous, 
    interval.file, log.ratio.calibration, test.num.copy, max.mapping.bias) {
    if (min(test.purity) <= 0 || max(test.purity) > 0.99) 
        .stopUserError("test.purity not within expected range.")
    if (min.ploidy <= 0 || max.ploidy <= 2) 
        .stopUserError("min.ploidy or max.ploidy not within expected range.")

    if (min(test.num.copy) < 0) 
        .stopUserError("test.num.copy not within expected range.")
    
    if (min(test.num.copy) > 0 || max(test.num.copy)>8) 
        flog.warn("test.num.copy outside recommended range.")
                   
    .checkFraction(max.non.clonal, "max.non.clonal")
    .checkFraction(max.homozygous.loss[1], "max.homozygous.loss")
    .checkFraction(prior.K, "prior.K")
    .checkFraction(prior.contamination, "prior.contamination")
    .checkFraction(min.gof, "min.gof")
    .checkFraction(max.mapping.bias, "max.mapping.bias")

    tmp <- sapply(prior.purity, .checkFraction, "prior.purity")

    if (!is.null(sampleid) && (!is(sampleid, "character") ||
        length(sampleid) != 1)) {
        .stopUserError("sampleid not a character string.")
    }
    if (abs(1-sum(prior.purity)) > 0.02) {
        .stopUserError("prior.purity must add to 1. Sum is ", sum(prior.purity))
    }    
    if (length(prior.purity) != length(test.purity)) {
        .stopUserError("prior.purity must have the same length as ",
            "test.purity.")
    }    
    if (!is.null(interval.file) && !file.exists(interval.file)) {
        .stopUserError("interval.file ", interval.file, " not found.")
    }

    stopifnot(is.numeric(min.ploidy))
    stopifnot(is.numeric(max.ploidy))
    stopifnot(is.numeric(test.purity))
    stopifnot(is.numeric(iterations))
    stopifnot(is.numeric(log.ratio.calibration))
    stopifnot(is.logical(model.homozygous))

    if (iterations < 10 || iterations > 250) {
        .stopUserError("Iterations not in the expected range from 10 to 250.")
    }    
}

.failedNonAberrant <- function(result, cutoffs = c(0.01, 0.005)) {
    xx <- split(result$seg, result$seg$C)
    if (length(xx) < 3) 
        return(TRUE)
    xx.sum <- sort(vapply(xx, function(x) sum(x$size), double(1)), 
        decreasing = TRUE)
    xx.sum <- xx.sum/sum(xx.sum)
    if (xx.sum[2] <= cutoffs[1] && xx.sum[3] <= cutoffs[2]) 
        return(TRUE)
    FALSE
}
.filterDuplicatedResults <- function(results, purity.cutoff = 0.1) {
    if (length(results) < 2) 
        return(results)
    idx.duplicated <- rep(FALSE, length(results))

    for (i in seq_len(length(results)-1)) {
        for (j in seq(i+1,length(results))) {
            if (abs(results[[i]]$purity - results[[j]]$purity) < purity.cutoff &&
                abs(results[[i]]$ploidy - results[[j]]$ploidy) /
                results[[i]]$ploidy < 0.1) {
                idx.duplicated[j] <- TRUE
            } 
        }
    }
    results[!idx.duplicated]
}
.filterDuplicatedCandidates <- function(candidates) {
    if (nrow(candidates) < 2) 
        return(candidates)
    idx.duplicated <- rep(FALSE, nrow(candidates))

    for (i in seq_len(nrow(candidates)-1)) {
        for (j in seq(i+1,nrow(candidates))) {
            if (abs(candidates$purity[i] - candidates$purity[j]) < 0.1 &&
                abs(candidates$tumor.ploidy[i] - candidates$tumor.ploidy[j]) / 
                candidates$tumor.ploidy[i] < 0.1) {
                idx.duplicated[j] <- TRUE
            } 
        }
    }
    candidates[!idx.duplicated, ]
}
.findLocalMinima <- function(m) {
    loc.min <- matrix(nrow = 0, ncol = 2)
    for (i in seq_len(nrow(m))) {
        for (j in seq_len(ncol(m))) {
            x <- seq(i - 1, i + 1)
            x <- x[x >= 1 & x <= nrow(m)]
            y <- seq(j - 1, j + 1)
            y <- y[y >= 1 & y <= ncol(m)]
            if (m[i, j] == max(m[x, y]) && !is.infinite(m[i, j])) 
                loc.min <- rbind(loc.min, c(row = i, col = j))
        }
    }
    loc.min
}
.appendComment <- function(a, b) {
    if (is.na(a)) 
        return(b)
    paste(a, b, sep = ";")
}
.isRareKaryotype <- function(ploidy) {
    ploidy > 4.5 || ploidy < 1.5
}
    
.flagResult <- function(result, max.non.clonal = 0.2, min.gof, 
    use.somatic.status, model.homozygous) {
    result$flag_comment <- NA
    result$flag <- .failedNonAberrant(result)
    if (result$flag) {
        result$flag_comment <- .appendComment(result$flag_comment, 
            "NON-ABERRANT")
    }
    if (result$fraction.subclonal > max.non.clonal*0.75) {
        result$flag <- TRUE
        result$flag_comment <- .appendComment(result$flag_comment, 
            "POLYGENOMIC")
    }
    if (result$fraction.homozygous.loss > 0.01) {
        result$flag <- TRUE
        result$flag_comment <- .appendComment(result$flag_comment, 
            "EXCESSIVE LOSSES")
    }
    if (.isRareKaryotype(result$ploidy)) {
        result$flag <- TRUE
        result$flag_comment <- .appendComment(result$flag_comment, 
            "RARE KARYOTYPE")
    }
    if (result$purity < 0.3) {
        result$flag <- TRUE
        result$flag_comment <- .appendComment(result$flag_comment, 
            "LOW PURITY")
    }
    if (result$purity > 0.9 && !model.homozygous && 
        (!is.null(use.somatic.status) && !use.somatic.status)) {
        result$flag <- TRUE
        result$flag_comment <- .appendComment(result$flag_comment, 
            "HIGH PURITY AND model.homozygous=FALSE")
    }
    result$GoF <- .getGoF(result)

    if (!is.null(result$GoF) && result$GoF < min.gof) {
        result$flag <- TRUE
        result$flag_comment <- .appendComment(result$flag_comment, 
            paste0("POOR GOF (", round(result$GoF*100,digits=1),"%)"))
    }

    fraction.loh <- .getFractionLoh(result)
    # Assume that everything below 2.6 did not undergo genome duplication, which can
    # result in lots of LOH
    if (result$ploidy < 2.6 && fraction.loh > 0.5) {
        result$flag <- TRUE
        result$flag_comment <- .appendComment(result$flag_comment, "EXCESSIVE LOH")
    }
    return(result)
}

.getFractionLoh <- function(result) {
    if (is.null(result$SNV.posterior)) return(0)
    pp <- result$SNV.posterior$posteriors
    x1 <- unique(pp$seg.id[pp$ML.M.SEGMENT==0])
    sum(result$seg$size[x1])/sum(result$seg$size)
}
.getGoF <- function(result) {
    if (is.null(result$SNV.posterior)) return(0)
    r <- result$SNV.posterior$posteriors
    e <- (r$ML.AR-r$AR.ADJUSTED)^2
    maxDist <- 0.2^2
    r2 <- max(1-mean(e,na.rm=TRUE)/maxDist,0)
    return(r2)
}    

.flagResults <- function(results, max.non.clonal = 0.2, max.logr.sdev, 
    logr.sdev, max.segments, min.gof, flag = NA, flag_comment = NA, 
    dropout=FALSE, use.somatic.status=TRUE, model.homozygous=FALSE) {
    if (length(results) < 1) return(results)

    results <- lapply(results, .flagResult, max.non.clonal=max.non.clonal, 
        min.gof=min.gof, use.somatic.status=use.somatic.status, 
        model.homozygous=model.homozygous)

    number.segments <- nrow(results[[1]]$seg)
    
    # some global flags
    if (logr.sdev > max.logr.sdev) {
        for (i in seq_along(results)) {
            results[[i]]$flag <- TRUE
            results[[i]]$flag_comment <- .appendComment(results[[i]]$flag_comment, 
                "NOISY LOG-RATIO")
        }
    }

    if (number.segments > max.segments) {
        for (i in seq_along(results)) {
            results[[i]]$flag <- TRUE
            results[[i]]$flag_comment <- .appendComment(results[[i]]$flag_comment, 
                "NOISY SEGMENTATION")
        }
    }

    if (dropout) {
        for (i in seq_along(results)) {
            results[[i]]$flag <- TRUE
            results[[i]]$flag_comment <- .appendComment(results[[i]]$flag_comment, 
                "HIGH AT- OR GC-DROPOUT")
        }
    }
    
    if (!is.na(flag) && flag) {
        for (i in seq_along(results)) {
            results[[i]]$flag <- TRUE
            results[[i]]$flag_comment <- .appendComment(results[[i]]$flag_comment, 
                flag_comment)
        }
    }
    results
}
.getGeneCalls <- function(seg.adjusted, tumor, log.ratio, fun.focal, 
    args.focal, chr.hash) {
    args.focal <- c(list(seg = seg.adjusted), args.focal)
    focal <- do.call(fun.focal, args.focal)
    abs.gc <- GRanges(seqnames = .add.chr.name(seg.adjusted$chrom, chr.hash), IRanges(start = seg.adjusted$loc.start, 
        end = seg.adjusted$loc.end))

    # that will otherwise mess up the log-ratio means, mins and maxs
    idx <- which(!is.nan(log.ratio) & is.finite(log.ratio) & tumor$Gene != ".")
    if (!length(idx)) return(NA)
    tumor <- tumor[idx]
    log.ratio <- log.ratio[idx]
    if (is.null(tumor$weights)) tumor$weights <- 1
    
    ov <- findOverlaps(tumor, abs.gc)
    if (is.null(seg.adjusted$weight.flagged)) seg.adjusted$weight.flagged <- NA
    # use funky data.table to calculate means etc. in two lines of code.
    dt <- data.table(as.data.frame(tumor[queryHits(ov)]), C = seg.adjusted[subjectHits(ov), "C"], 
        C.flagged = seg.adjusted$weight.flagged[subjectHits(ov)],
        seg.mean = seg.adjusted[subjectHits(ov), "seg.mean"], LR = log.ratio[queryHits(ov)], 
        seg.id = subjectHits(ov), seg.length = seg.adjusted$size[subjectHits(ov)], 
        focal = focal[subjectHits(ov)]
        )
    # some targets have multipe genes assigned?
    if (sum(grepl(",", dt$Gene))) {
        dt <- dt[, list(Gene = unlist(strsplit(as.character(Gene), ",", fixed=TRUE))), 
            by = list(seqnames, start, end, C, C.flagged, seg.mean, seg.id,
                      seg.length, LR, focal, weights)]
    }
    multi_chrom_symbols <- names(which(sapply(lapply(split(as.character(dt$seqnames), dt$Gene), unique), length) > 1))
    if (length(multi_chrom_symbols)) {
        flog.warn("Some gene symbols found on multiple chromosomes. Use of approved symbols suggested.")
        idx <- which(dt$Gene %in% multi_chrom_symbols)
        dt$Gene[idx] <- paste(dt$Gene[idx], dt$seqnames[idx], sep = "__")
    }    
    gene.calls <- data.frame(dt[, list(chr = seqnames[1], start = min(start), 
        end = max(end), 
        C = as.double(C[which.min(seg.length)]), 
        C.flagged = any(C.flagged),
        seg.mean = seg.mean[which.min(seg.length)],
        seg.id = seg.id[which.min(seg.length)], 
        .min.segid=min(seg.id), .max.segid=max(seg.id),
        number.targets = length(start), 
        gene.mean = weighted.mean(LR, weights, na.rm = TRUE), 
        gene.min = min(LR, na.rm = TRUE), gene.max = max(LR, na.rm = TRUE), 
        focal = focal[which.min(seg.length)]), by = Gene], row.names = 1)
    breakpoints <- gene.calls$.max.segid - gene.calls$.min.segid
    gene.calls$breakpoints <- breakpoints
    gene.calls    
}


.extractCountMatrix <- function(coverages) {
    useCounts <- .coverageHasCounts(coverages)
    if (useCounts) {
        return(do.call(cbind, 
            lapply(coverages, function(x) x$counts)))
    }
    # TODO: remove spring 2018 release
    flog.info("Coverage file does not contain read count information, %s", 
        "using total coverage for calculating log-ratios.")
    do.call(cbind, 
      lapply(coverages, function(x) x$coverage))
}
.coverageHasCounts <- function(coverages) {
    for (i in seq_along(coverages)) 
        if (sum(!is.na(coverages[[i]]$counts))==0) return(FALSE)
    return(TRUE)        
}
.checkSymbolsChromosome <- function(tumor, blank=c("", ".")) {
    if (is.null(tumor$Gene)) {
        tumor$Gene <- "."
        return(tumor)
    }    
    chrsPerSymbol <- lapply(split(seqnames(tumor), tumor$Gene), unique)
    nonUniqueSymbols <- names(chrsPerSymbol[sapply(chrsPerSymbol, length)>1])
    idx <- tumor$Gene %in% nonUniqueSymbols
    idxBlank <- tumor$Gene %in% blank
    tumor$Gene <- as.character(tumor$Gene)
    tumor$Gene[idx] <- paste(tumor$Gene, tumor$chr, sep=".")[idx]
    tumor$Gene[idxBlank] <- "."
    tumor
}
    
.get2DPurityGrid <- function(test.purity, by=1/30) {
    startPurity <- max(0.1, min(test.purity))
    endPurity <- min(0.99, max(test.purity))
    grid <- seq(startPurity, endPurity, by=by)   
    if (startPurity < 0.34 && endPurity > 0.35) {
        grid <- c(seq(startPurity, 0.34, by=1/50), 
        seq(0.35, endPurity, by=by))
    } 
    grid       
}
    
.optimizeGrid <- function(test.purity, min.ploidy, max.ploidy, test.num.copy = 0:7, 
    exon.lrs, seg, sd.seg, li, max.exon.ratio, max.non.clonal, BPPARAM) {
    ploidy.grid <- seq(min.ploidy, max.ploidy, by = 0.2)
    if (min.ploidy < 1.8 && max.ploidy > 2.2) {
        ploidy.grid <- c(seq(min.ploidy, 1.8, by = 0.2), 1.9, 2, 2.1, seq(2.2, max.ploidy, 
            by = 0.2))
    }

    .optimizeGridPurity <- function(p) {
        b <- 2 * (1 - p)
        log.ratio.offset <- 0
        lapply(ploidy.grid, function(D) {
            dt <- p/D
            llik.all <- lapply(seq_along(exon.lrs), function(i) .calcLlikSegmentExonLrs(exon.lrs[[i]], 
                log.ratio.offset, max.exon.ratio, sd.seg, dt, b, D, test.num.copy))
            subclonal <- vapply(llik.all, which.max, double(1)) == 1
            subclonal.f <- length(unlist(exon.lrs[subclonal]))/length(unlist(exon.lrs))
            if (subclonal.f > max.non.clonal) return(-Inf)
            sum(vapply(llik.all, max, double(1)))
        })
    }
    if (is.null(BPPARAM)) {
        mm <- lapply(test.purity, .optimizeGridPurity)
    } else {
        mm <- BiocParallel::bplapply(test.purity, .optimizeGridPurity, BPPARAM = BPPARAM)
    }
    mm <- sapply(mm, function(x) unlist(x))
    colnames(mm) <- test.purity
    rownames(mm) <- ploidy.grid

    if (!sum(as.vector(is.finite(mm)))) {
        .stopUserError("Cannot find valid purity/ploidy solution. ", 
            "This happens when input segmentations are garbage, most likely ",
            "due to a catastrophic sample QC failure. Re-check standard QC ",
            "metrics for this sample.")
    }

    ai <- .findLocalMinima(mm)
    candidates <- data.frame(ploidy = as.numeric(rownames(mm)[ai[, 1]]), purity = as.numeric(colnames(mm)[ai[, 
        2]]), llik = mm[ai])
    candidates$tumor.ploidy <- (candidates$ploidy - 2 * (1 - candidates$purity))/candidates$purity
    
    # add diploid candidate solutions in the following purity grid in 
    # case there are none.
    grid <- seq(0,1,by=1/4)
    for (i in seq_along(grid)[-length(grid)]) {
   
        t1 <- which.min(abs(as.numeric(colnames(mm)) - grid[i]))
        t2 <- which.min(abs(as.numeric(colnames(mm)) - grid[i+1]))
        if (t2-t1 < 2) next
        
        if (sum(candidates$purity>grid[i] & 
            candidates$purity< grid[i+1], na.rm=TRUE) < 1) next

        # Nothing close to diplod in this range? Then add.
        if (min(abs(2 - candidates$tumor.ploidy[candidates$purity>grid[i] & 
            candidates$purity< grid[i+1]])) > 0.3) {

            mm.05 <- mm[, seq(t1+1, t2), drop=FALSE]
            
            # Find row most similar to normal diploid
            diploidRowId <- which.min(abs(2-as.numeric(row.names(mm.05))))
            # assert that rownames are still what they should be
            if (diploidRowId != which.min(abs(2-ploidy.grid))) {
                .stopRuntimeError("Cannot find diploid row in grid search.")
            }
            candidates <- rbind(candidates, 
                c(2, as.numeric(names(which.max(mm.05[diploidRowId, ]))), 
                max(mm.05[diploidRowId, ]), 2))

            # Remove again if too similar with existing candidate
            if (nrow(candidates) > 2 && 
                abs(Reduce("-",tail(candidates$ploidy,2))) < 0.001 && 
                abs(Reduce("-",tail(candidates$purity,2))) < 0.1) {
                candidates <- candidates[- (nrow(candidates) - 2 + 
                    which.min(tail(candidates$llik,2))),]
            }    
        }
    }
    
    candidates <- candidates[candidates$tumor.ploidy >= 0.5, ]
    candidates <- .filterDuplicatedCandidates(candidates)
    
    list(all = mm, candidates = candidates[order(candidates$llik, decreasing = TRUE), 
        ])
}
.calcLlikSegmentExonLrs <- function(exon.lrs, log.ratio.offset, max.exon.ratio, sd.seg, 
    dt, b, D, test.num.copy) {
    c(.calcLlikSegmentSubClonal(exon.lrs + log.ratio.offset, max.exon.ratio), vapply(test.num.copy, 
        function(Ci) sum(dnorm(exon.lrs + log.ratio.offset, mean = log2(dt * Ci + 
            b/D), sd = sd.seg, log = TRUE)),double(1)))
}

# This function is used to punish more complex copy number models
# a little bit. Based on the BIC. This just counts the number of utilized 
# copy number states, excluding normal 2. Then multiplies by 
# log(number exons)
.calcComplexityCopyNumber <- function(results) {
    if (length(results) < 2) return(0)
    cs <- sapply((0:7)[-3], function(i) sapply(results, function(y)
                    sum(y$seg$size[y$seg$C == i])/sum(y$seg$size)))
    complexity <- apply(cs,1, function(z) sum(z>0.001))
    n <- sum(results[[1]]$seg$num.mark, na.rm=TRUE)
    -complexity*log(n)
}

.rankResults <- function(results) {
    if (length(results) < 1) return(results)  
    complexity <- .calcComplexityCopyNumber(results) 
    for (i in seq_along(results)) {
        if (is.null(results[[i]]$SNV.posterior)) {
            results[[i]]$total.log.likelihood <- results[[i]]$log.likelihood
        } else {
            results[[i]]$total.log.likelihood <- results[[i]]$log.likelihood/2 + results[[i]]$SNV.posterior$llik
        }
        results[[i]]$total.log.likelihood <- results[[i]]$total.log.likelihood + complexity[i]
    }
    idx.opt <- order(sapply(results, function(z) z$total.log.likelihood), decreasing = TRUE)
    
    results <- results[idx.opt]
    
    # remove solutions with -inf likelihood score
    results[!is.infinite(sapply(results, function(z) z$total.log.likelihood))]
}

.sampleOffsetFast <- function(test.num.copy, seg, exon.lrs, sd.seg, p, C, total.ploidy, 
    max.exon.ratio, simulated.annealing, log.ratio.calibration) {
    # Gibbs sample offset
    test.offset <- seq(sd.seg * -log.ratio.calibration, sd.seg * log.ratio.calibration, 
        by = 0.01)
    test.offset <- seq(p * -log.ratio.calibration, p * log.ratio.calibration * 0.2, length.out=12)

    seg.ids.by.chr <- list(seq_len(nrow(seg)))
    
    lr <- lapply(seq_along(seg.ids.by.chr), function(j) {
        px.offset <- lapply(test.offset, function(px) vapply(seg.ids.by.chr[[j]], 
            function(i) {
                b <- 2 * (1 - p)
                D <- total.ploidy
                dt <- p/D
                llik.all <- .calcLlikSegmentExonLrs(exon.lrs[[i]], px, max.exon.ratio, 
                  sd.seg, dt, b, D, test.num.copy)
                vapply(llik.all, max, double(1))
            }, double(1+length(test.num.copy))))
        px.offset.s <- vapply(lapply(px.offset, apply, 2, max), sum, double(1))
        
        px.offset.s <- exp(px.offset.s - max(px.offset.s))
        log.ratio.offset <- test.offset[min(which(runif(n = 1, min = 0, max = sum(px.offset.s)) <= 
            cumsum(px.offset.s)))]
    })
    do.call(c, lapply(seq_along(lr), function(i) rep(lr[[i]], length(seg.ids.by.chr[[i]]))))
}
.sampleError <- function(subclonal, seg, exon.lrs, sd.seg, p, C, total.ploidy, max.exon.ratio, 
    simulated.annealing, iter, log.ratio.calibration, log.ratio.offset) {
    # Gibbs sample error
    test.error <- seq(sd.seg, sd.seg + sd.seg * 0.2, length.out = 5)

    seg.ids <- seq_len(nrow(seg))
    
    px.error <- lapply(test.error, function(error) vapply(seg.ids, 
        function(i) .calcLlikSegment(subclonal[i], exon.lrs[[i]] + log.ratio.offset[i], error, 
            p, C[i], total.ploidy, max.exon.ratio), double(1))
    )
    px.error.s <- sapply(px.error, sum, na.rm = TRUE)
    if (simulated.annealing) 
        px.error.s <- px.error.s * exp(iter/4)
    px.error.s <- exp(px.error.s - max(px.error.s))
    error <- test.error[min(which(runif(n = 1, min = 0, max = sum(px.error.s)) <= 
        cumsum(px.error.s)))]
}

.sampleOffset <- function(subclonal, seg, exon.lrs, sd.seg, p, C, total.ploidy, max.exon.ratio, 
    simulated.annealing, iter, log.ratio.calibration = 0.25) {
    # Gibbs sample offset
    test.offset <- seq(sd.seg * -log.ratio.calibration, sd.seg * log.ratio.calibration, 
        by = 0.01)
    test.offset <- seq(p * -log.ratio.calibration, p * log.ratio.calibration * 0.2, length.out=12)
    seg.ids.by.chr <- list(seq_len(nrow(seg)))
    
    lr <- lapply(seq_along(seg.ids.by.chr), function(j) {
        px.offset <- lapply(test.offset, function(px) vapply(seg.ids.by.chr[[j]], 
            function(i) .calcLlikSegment(subclonal[i], exon.lrs[[i]] + px, sd.seg, 
                p, C[i], total.ploidy, max.exon.ratio), double(1))
        )
        
        px.offset.s <- sapply(px.offset, sum, na.rm = TRUE)
        if (simulated.annealing) 
            px.offset.s <- px.offset.s * exp(iter/4)
        px.offset.s <- exp(px.offset.s - max(px.offset.s))
        log.ratio.offset <- test.offset[min(which(runif(n = 1, min = 0, max = sum(px.offset.s)) <= 
            cumsum(px.offset.s)))]
    })
    do.call(c, lapply(seq_along(lr), function(i) rep(lr[[i]], length(seg.ids.by.chr[[i]]))))
}
.removeOutliers <- function(x, na.rm=TRUE,...) {
    if (length(x) < 5) 
        return(x)
    qnt <- quantile(x, probs = c(0.25, 0.75), na.rm = na.rm, ...)
    H <- 1.5 * IQR(x, na.rm = na.rm)
    if (is.na(H) || H < 0.001) return(x)
    # find points outside the 'boxplot' range
    idx <- x <= (qnt[1] - H) | x >= (qnt[2] + H)
    x[!idx]
}    
.calcPuritySomaticVariants <- function(vcf, tumor.id.in.vcf) {
    idx <- info(vcf)[[paste0(.getPureCNPrefixVcf(vcf), "PR")]] > 0.5
    median(unlist(geno(vcf[idx])$FA[, tumor.id.in.vcf]), na.rm = TRUE)/0.48
}
.robustSd <- function(d, size = 25) median(
sapply(split(d, ceiling(seq_along(d) / size)), sd, na.rm = TRUE), 
na.rm = TRUE)
.createFakeLogRatios <- function(tumor, seg.file, sampleid, chr.hash, 
    model.homozygous=FALSE, max.logr.sdev) {
    if (!is.null(tumor$log.ratio)) {
         # calculate log.ratio sd in chunks of size 25 to estimate the 
         # segmented sd

        if (.robustSd(tumor$log.ratio) < max.logr.sdev) {
            flog.info("Found log2-ratio in tumor coverage data.")
            idx <- tumor$log.ratio < -8
            if (any(idx)) {
                flog.warn("log2-ratio contains outliers < -8, ignoring them...")
                tumor$log.ratio[idx] <- NA
            }    
            return(tumor$log.ratio)
        } else {
            flog.info("Provided log2-ratio looks too noisy, using segmentation only.")
        }
    }
    if (is(seg.file, "character")) {
        seg <- readSegmentationFile(seg.file, sampleid, model.homozygous = model.homozygous, verbose=FALSE)    
    } else {
        seg <-.checkSeg(seg.file, sampleid, model.homozygous, verbose=FALSE)
    }    
    seg.gr <- GRanges(seqnames = .add.chr.name(seg$chrom, chr.hash), 
                IRanges(start = round(seg$loc.start), end = seg$loc.end))

    ov <- findOverlaps(tumor, seg.gr)
    log.ratio <- seg$seg.mean[subjectHits(ov)]
    # sanity check, so that every exon has exactly one segment log-ratio
    log.ratio <- log.ratio[match(seq_len(length(tumor)), queryHits(ov))]
    mean.log.ratio <- mean(subset(log.ratio, !is.infinite(log.ratio)), 
        na.rm = TRUE)
    # calibrate
    log.ratio <- log.ratio - mean.log.ratio
    log.ratio
}
.strip.chr.name <- function(ls, chr.hash) {
    x <- chr.hash[as.character(ls), 2]
    x[is.na(x)] <- as.numeric(ls[is.na(x)])
    x
}
.add.chr.name <- function(ls, chr.hash) {
    x <- as.character(chr.hash$chr[match(ls, chr.hash$number)])
    x[is.na(x)] <- ls[is.na(x)]
    x
}
.getChrHash <- function(ls) {
    ls <- unique(ls)
    chr.hash <- genomeStyles(species="Homo_sapiens")
    chr.hash <- chr.hash[!chr.hash$circular,]
    id <- which.max(apply(chr.hash[,-(1:3)],2,function(x) sum(ls %in%x)))+3
    chr.hash <- data.frame(chr=chr.hash[,id], number=seq_len(nrow(chr.hash)),
        row.names=chr.hash[,id])
    if (sum(!ls %in% chr.hash[,1]) == 0) return(chr.hash)
    data.frame(chr=as.factor(ls), number=seq_along(ls), row.names=ls)
}
.stopUserError <- function(...) {
    msg <- paste(c(...), collapse="")
    msg <- paste0(msg, "\n\nThis is most likely a user error due to",
        " invalid input data or parameters (PureCN ", 
        packageVersion("PureCN"), ").")
    flog.fatal(paste(strwrap(msg),"\n"))
    stop(paste(strwrap(msg),collapse = "\n"), call.= FALSE)
}
.stopRuntimeError <- function(...) {
    msg <- paste(c(...), collapse="")
    msg <- paste0(msg, "\n\nThis runtime error might be caused by",
        " invalid input data or parameters. Please report bug (PureCN ", 
        packageVersion("PureCN"), ").")
    flog.fatal(paste(strwrap(msg),"\n"))
    stop(paste(strwrap(msg),collapse = "\n"), call.= FALSE)
}
.logHeader <- function(l) {
    flog.info(strrep("-", 60))
    flog.info("PureCN %s", as.character(packageVersion("PureCN")))
    flog.info(strrep("-", 60))
    # which arguments are printable in a single line?
    idxSupported <- sapply(l, function(x) class(eval.parent(x))) %in% 
        c("character", "numeric", "NULL", "list", "logical") &
        sapply(l, function(x) object.size(eval.parent(x))) < 1024
    idxSmall <-     
        sapply(l[idxSupported], function(x) length(unlist(eval.parent(x)))) < 12
    idxSupported[idxSupported] <- idxSmall    

    l <- c(l[idxSupported],lapply(l[!idxSupported], function(x) "<data>"))
    argsStrings <- paste(sapply(seq_along(l), function(i) paste0("-", 
        names(l)[i], " ", paste(eval.parent(l[[i]]),collapse=","))),
        collapse=" ")
    flog.info("Arguments: %s", argsStrings)
}
.logFooter <- function() {
    flog.info("Done.")
    flog.info(strrep("-", 60))
}    
.calcGCmetric <- function(gc_bias, coverage, on.target, field = "average.coverage") {
    idx <- which(coverage$on.target==on.target)
    if (!length(idx)) return(NA)
    gcbins <- split(mcols(coverage[idx])[,field], gc_bias[idx] < 0.5)
    mean(gcbins[[1]], na.rm=TRUE) / mean(gcbins[[2]], na.rm=TRUE) 
}
.checkGCBias <- function(normal, tumor, log.ratio, max.dropout, on.target = TRUE) {
    # vector instead of tumor meta column provided
   
    if (is(log.ratio, "numeric") && length(log.ratio) == length(tumor)) {
        tumor$ratio <- 2^(log.ratio)
    } else {
        .stopRuntimeError("tumor and log.ratio do not align in .checkGCBias")
    }    

    gcMetricNormal <- .calcGCmetric(tumor$gc_bias, normal, on.target)
    gcMetricTumor <- .calcGCmetric(tumor$gc_bias, tumor, on.target)
    gcMetricLogRatio <- .calcGCmetric(tumor$gc_bias, tumor, on.target, "ratio")

    if (is.na(gcMetricTumor)) return(FALSE)

    flog.info("AT/GC dropout%s: %.2f (tumor), %.2f (normal), %.2f (coverage log-ratio). ", 
        ifelse(on.target,""," (off-target regions)"), gcMetricTumor,
        gcMetricNormal, gcMetricLogRatio)
    # throw warning only when the gc bias extends to normalzed log-ratio
    max.dropout.half <- sapply(max.dropout, function(x) x + (1 - x)/2)
    if (gcMetricLogRatio < max.dropout.half[1] || 
        gcMetricLogRatio > max.dropout.half[2]) {
        flog.warn("High GC-bias in normalized tumor vs normal log2 ratio.")
        return(TRUE)
    } else if (gcMetricNormal < max.dropout[1] || 
        gcMetricNormal > max.dropout[2] ||
        gcMetricTumor  < max.dropout[1] ||
        gcMetricTumor  > max.dropout[2]) {
        flog.info("High GC-bias in normal and/or tumor coverage.")
    }
    return(FALSE)
}

.gcGeneToCoverage <- function(interval.file, min.coverage, min.total.counts) {
    gc.data <- readIntervalFile(interval.file)
    gc.data$average.coverage <- min.coverage
    gc.data$coverage <- min.coverage * width(gc.data)
    gc.data$counts <- Inf
    gc.data
}

.getCentromerePositions <- function(centromeres, genome, style=NULL) {
    if (is.null(centromeres)) {
        data(centromeres, envir = environment())
        if (genome %in% names(centromeres)) {
            centromeres <- centromeres[[genome]]
            if (!is.null(style)) seqlevelsStyle(centromeres) <- style[1]
        } else {
            centromeres <- NULL
        }
    }
    centromeres
}
.checkArgs <- function(args, fname) {
    dups <- duplicated(names(args)) 
    if (sum(dups)) {
        args <- args[!dups]
        flog.warn("Duplicated arguments in %s", fname)
    }
    args
}
.calcFractionBalanced <- function(p) {
    sum(p$ML.C - p$ML.M.SEGMENT == p$ML.M.SEGMENT, na.rm=TRUE)/nrow(p)
}

# function to adjust log-ratios to segment mean
.postprocessLogRatios <- function(exon.lrs, seg.mean) {

    exon.lrs <- lapply(seq_along(exon.lrs), function(i) {
        if (length(exon.lrs[[i]]) > 3) return(exon.lrs[[i]])
        exon.lrs[[i]] - mean(exon.lrs[[i]]) + seg.mean[i]
    })

    return(exon.lrs)
}

.estimateContamination <- function(pp,  max.mapping.bias = NULL, min.fraction.chromosomes = 0.8) {
    if (is.null(max.mapping.bias)) max.mapping.bias <- 0

    idx <- pp$GERMLINE.CONTHIGH + pp$GERMLINE.CONTLOW > 0.5 & 
        pp$MAPPING.BIAS >= max.mapping.bias &
        pp$MAPPING.BIAS <= (2 - max.mapping.bias)

    if (!length(which(idx))) return(0)
    df <- data.frame(
        chr=pp$chr[idx], 
        AR=sapply(pp$AR.ADJUSTED[idx], function(x) ifelse(x>0.5, 1-x,x)),
        HIGHLOW=ifelse(pp$GERMLINE.CONTHIGH>pp$GERMLINE.CONTLOW, 
            "HIGH", "LOW")[idx]
    )
    # take the chromosome median and then average. the low count
    # might be biased in case contamination rate is < AR cutoff
    estimatedRate <- weighted.mean( 
        sapply(split(df$AR, df$HIGHLOW), median), 
        sapply(split(df$AR, df$HIGHLOW), length)
    )
    fractionChrs <- sum(unique(pp$chr) %in% df$chr)/length(unique(pp$chr))
    estimatedRate <- if (fractionChrs >= min.fraction.chromosomes) estimatedRate else 0
    estimatedRate
}

.calculate_ccf <- function(vaf, depth, purity, C){
    # see DOI: 10.1126/scitranslmed.aaa1408
    if (is.na(vaf)) return(c(NA, NA, NA))
    possible_ccfs <- seq(0.01, 1, 0.01)
    possible_vafs <- (purity * possible_ccfs)/
        ((2 * (1 - purity)) + (purity * C)) #Expected VAF for each CCF
    possible_vafs <- pmax(pmin(possible_vafs, 1), 0)  
    probs <- dbinom(x=round(vaf*depth), size = depth, prob = possible_vafs) #Prob of observed VAF
    names(probs) <- possible_ccfs
    if (!sum(probs)) {
        if (vaf > max(possible_vafs)) return(c(1, 1, 1))
        return(c(NA, NA, NA))
    }
    probs_norm <- probs / sum(probs) #Normalise to get posterior distribution
    probs_sort <- sort(probs_norm, decreasing = TRUE)
    probs_cum <- cumsum(probs_sort)
    n <- sum(probs_cum < 0.95) + 1 #Get 95% confidence interval (95% of probability)
    threshold <- probs_sort[n]
    cint  <- probs[probs_norm >= threshold]
    ccf_point <- as.numeric(names(which.max(probs_norm)))
    ccf_lower <- as.numeric(names(cint)[1])
    ccf_upper <- as.numeric(names(cint)[length(cint)])
    return(c(ccf_point, ccf_lower, ccf_upper))
}

.imputeBetaBin <- function(depth, bias, mu, rho) {
    if (is.null(mu)) { 
        mu <- bias / 2
    } else {    
        idx <- is.na(mu)
        mu[idx] <- (bias/2)[idx]
    }
    if (is.null(rho) || all(is.na(rho))) { 
        rho <- 1 / (1 + depth)
    } else {    
        idx <- is.na(rho)
        rho[idx] <- mean(rho, na.rm = TRUE)
    }
    list(mu = mu, rho = rho)
}    
.calculate_allelic_imbalance <- function(vaf, depth, max.coverage.vcf, bias, mu, rho) {
    impute <- .imputeBetaBin(depth, bias, mu, rho)
    dbetabinom(x = round(vaf * depth), depth, prob = impute$mu, rho = impute$rho, log = TRUE) 
}    

.getExonLrs <- function(seg.gr, tumor, log.ratio, idx = NULL) {
    if (!is.null(idx)) {
        tumor <- tumor[idx]
        log.ratio <- log.ratio[idx]
    }    
    ov.se <- findOverlaps(seg.gr, tumor)
    exon.lrs <- lapply(seq_len(length(seg.gr)), function(i) log.ratio[subjectHits(ov.se)[queryHits(ov.se) == 
        i]])
    exon.lrs <- lapply(exon.lrs, function(x) subset(x, !is.na(x) & !is.infinite(x)))
    # estimate stand. dev. for target logR within targets. this will be used as proxy
    # for sample error.
    targetsPerSegment <- vapply(exon.lrs, length, integer(1))
    if (!sum(targetsPerSegment > 50, na.rm = TRUE) && !is.null(idx)) {
        .stopRuntimeError("Only tiny segments.")
    }
    exon.lrs
}

# there are way too many bugs with this, so let's have one function we can more easily
# debug
.getSeqlevelsStyle <- function(x) {
    if (is(x, "character")) {
        sl <- x
    } else {    
        sl <- try(seqlevels(x))
    }    
    if (is(sl, "character")) {
        style <- seqlevelsStyle(sl)
        if ("Ensembl" %in% style) style <- "Ensembl"
        return(style[1])    
    }
    seqlevelsStyle(x)
}        
lima1/PureCN documentation built on Sept. 17, 2024, 5:48 a.m.