R/cdsfile2rbh.R

Defines functions cdsfile2rbh

Documented in cdsfile2rbh

#' @title cdsfile2rbh
#' @name cdsfile2rbh
#' @description This function calculates (conditional-)reciprocal best hit
#' (CRBHit) pairs from two CDS fasta files.
#' CRBHit pairs were introduced by \emph{Aubry S, Kelly S et al. (2014)}.
#' Sequence searches are performed with \bold{last}
#' \emph{Kiełbasa, SM et al. (2011)} [default]
#' or with \bold{mmseqs2}
#' \emph{Steinegger, M and Soeding, J (2017)}
#' or with \bold{diamond}
#' \emph{Buchfink, B et al. (2021)}.
#' If one specifies cdsfile1 and cdsfile2 as the same input a selfblast is
#' conducted.
#' @param cdsfile1 cds1 fasta file [mandatory]
#' @param cdsfile2 cds2 fasta file [mandatory]
#' @param searchtool specify sequence search algorithm last, mmseqs2 or diamond
#' [default: last]
#' @param lastpath specify the PATH to the last binaries
#' [default: /extdata/last-1542/bin/]
#' @param lastD last option D: query letters per random alignment
#' [default: 1e6]
#' @param mmseqs2path specify the PATH to the mmseqs2 binaries
#' [default: NULL]
#' @param mmseqs2sensitivity specify the sensitivity option of mmseqs2
#' [default: 5.7]
#' @param diamondpath specify the PATH to the diamond binaries
#' [default: NULL]
#' @param diamondsensitivity specify the sensitivity option of diamond
#' [default: --sensitive]
#' @param diamondmaxtargetseqs specify the maximum number of target sequences
#' per query option of diamond
#' [default: -k0]
#' @param outpath specify the output PATH [default: /tmp]
#' @param crbh specify if conditional-reciprocal hit pairs should be retained
#' as secondary hits [default: TRUE]
#' @param keepSingleDirection specify if single direction secondary hit pairs
#' should be retained [default: FALSE]
#' @param eval evalue [default: 1e-3]
#' @param qcov query coverage [default: 0.0]
#' @param tcov target coverage [default: 0.0]
#' @param pident percent identity [default: 0.0]
#' @param alnlen alignment length [default: 0.0]
#' @param rost1999 specify if hit pairs should be filter by equation 2 of
#' Rost 1999 [default: FALSE]
#' @param filter specify additional custom filters as list to be applied on
#' hit pairs [default: NULL]
#' @param plotCurve specify if crbh fitting curve should be plotted
#' [default: FALSE]
#' @param fit.type specify if mean or median should be used for fitting
#' [default: mean]
#' @param fit.varweight factor for fitting function to consider neighborhood
#' [default: 0.1]
#' @param fit.min specify minimum neighborhood alignment length [default: 5]
#' @param longest.isoform specify if cds sequences should be removed to the
#' longest isoform (only possible if data was accessed from NCBI or ENSEMBL)
#' [default: FALSE]
#' @param isoform.source specify cds sequences source (either NCBI or ENSEMBL)
#' [default: NCBI]
#' @param threads number of parallel threads [default: 1]
#' @param remove specify if last result files should be removed [default: TRUE]
#' @param shorten1 shorten all sequences to multiple of three [default: FALSE]
#' @param frame1  indicates the first base of a the first codon [default: 1]
#' @param framelist1  supply vector of frames for each entry [default: NULL]
#' @param genetic.code1 The genetic code to use for the translation of codons
#' into Amino Acid letters [default: NULL]
#' @param shorten2 shorten all sequences to multiple of three [default: FALSE]
#' @param frame2  indicates the first base of a the first codon [default: 1]
#' @param framelist2  supply vector of frames for each entry [default: NULL]
#' @param genetic.code2 The genetic code to use for the translation of codons
#' into Amino Acid letters [default: NULL]
#' @return List of three (crbh=FALSE)\cr
#' 1: $crbh.pairs\cr
#' 2: $crbh1 matrix; query > target\cr
#' 3: $crbh2 matrix; target > query\cr
#' \cr
#' List of four (crbh=TRUE)\cr
#' 1: $crbh.pairs\cr
#' 2: $crbh1 matrix; query > target\cr
#' 3: $crbh2 matrix; target > query\cr
#' 4: $rbh1_rbh2_fit; evalue fitting function
#' @importFrom Biostrings DNAString DNAStringSet AAString AAStringSet
#' readDNAStringSet readAAStringSet writeXStringSet width subseq
#' @importFrom graphics legend par points
#' @importFrom stats median splinefun
#' @importFrom utils read.table
#' @importFrom tidyr %>%
#' @importFrom MSA2dist cds2aa
#' @seealso \code{\link[CRBHits]{cds2rbh}},
#' \code{\link[CRBHits]{isoform2longest}}
#' @references Aubry S, Kelly S et al. (2014) Deep Evolutionary Comparison of
#' Gene Expression Identifies Parallel Recruitment of Trans-Factors in Two
#' Independent Origins of C4 Photosynthesis. \emph{PLOS Genetics},
#' \bold{10(6)} e1004365.
#' @references Kiełbasa, SM et al. (2011) Adaptive seeds tame genomic sequence
#' comparison. \emph{Genome research}, \bold{21(3)}, 487-493.
#' @references Steinegger, M and Soeding, J. (2017). MMseqs2 enables sensitive
#' protein sequence searching for the analysis of massive data sets.
#' \emph{Nature Biotechnology}, \bold{35}, 1026-1028.
#' @references Rost B. (1999). Twilight zone of protein sequence alignments.
#' \emph{Protein Engineering}, \bold{12(2)}, 85-94.
#' @examples
#' ## compile last-1542 within CRBHits
#' CRBHits::make_last()
#' ## load example sequence data
#' athfile <- system.file("fasta", "ath.cds.fasta.gz", package="CRBHits")
#' alyfile <- system.file("fasta", "aly.cds.fasta.gz", package="CRBHits")
#' ## get CRBHit pairs
#' ath_aly_crbh <- cdsfile2rbh(
#'     cdsfile1=athfile,
#'     cdsfile2=alyfile,
#'     plotCurve=TRUE)
#' dim(ath_aly_crbh$crbh.pairs)
#' ## get classical reciprocal best hit (RBHit) pairs
#' ath_aly_rbh <- cdsfile2rbh(
#'     cdsfile1=athfile,
#'     cdsfile2=alyfile,
#'     crbh=FALSE)
#' dim(ath_aly_rbh$crbh.pairs)
#' ## selfblast
#' ath_selfblast_crbh <- cdsfile2rbh(
#'     cdsfile1=athfile,
#'     cdsfile2=athfile,
#'     plotCurve=TRUE)
#' ## see ?cds2rbh for more examples
#' @export cdsfile2rbh
#' @author Kristian K Ullrich

cdsfile2rbh <- function(cdsfile1, cdsfile2,
    searchtool="last",
    lastpath=paste0(find.package("CRBHits"),
        "/extdata/last-1542/bin/"),
    lastD=1e6,
    mmseqs2path=NULL,
    mmseqs2sensitivity=5.7,
    diamondpath=NULL,
    diamondsensitivity="--sensitive",
    diamondmaxtargetseqs="-k0",
    outpath="/tmp",
    crbh=TRUE,
    keepSingleDirection=FALSE,
    eval=1e-3,
    qcov=0.0,
    tcov=0.0,
    pident=0.0,
    alnlen=0.0,
    rost1999=FALSE,
    filter=NULL,
    plotCurve=FALSE,
    fit.type="mean",
    fit.varweight=0.1,
    fit.min=5,
    longest.isoform=FALSE,
    isoform.source="NCBI",
    threads=1,
    remove=TRUE,
    shorten1=FALSE,
    frame1=1,
    framelist1=NULL,
    genetic.code1=NULL,
    shorten2=FALSE,
    frame2=1,
    framelist2=NULL,
    genetic.code2=NULL
    ){
    #internal function to fit evalue by length
    fitSpline <- function(alnlength, evalue, fit.type, fit.varweight, fit.min){
        log10evalue <- -log10(evalue)
        log10evalue[is.infinite(log10evalue)] <- 324
        x <- cbind(alnlength, log10evalue)
        x <- x[order(x[,1]),]
        x.max <- max(x[,1])
        fitMatrix <- matrix(0, ncol=2, nrow=x.max)
        for(i in seq(from=1, to=x.max)){
            fitMatrix[i, 1] <- i
            s <- round(i * fit.varweight)
            if(s<fit.min){s <- fit.min}
            smin <- i - s
            smax <- i + s
            s.idx <- which(x[,1]>=smin & x[,1]<=smax)
            if(length(s.idx)==0){s.value <- 0}
            if(length(s.idx)!=0){
                if(fit.type=="mean"){
                    s.value <- mean(x[s.idx, 2])
                }
                if(fit.type=="median"){
                    s.value <- median(x[s.idx, 2])
                }
            }
            if(i==1){
                fitMatrix[i, 2] <- s.value
            }
            if(i>1){
                if(fitMatrix[i-1, 2]<=s.value){
                    fitMatrix[i, 2] <- s.value
                }
                if(fitMatrix[i-1, 2]>s.value){
                    fitMatrix[i, 2] <- fitMatrix[i-1, 2]
                }
            }
        }
        fitMatrixfun <- splinefun(fitMatrix[,1], fitMatrix[,2])
        return(fitMatrixfun)
    }
    if(searchtool=="last"){
        if(!dir.exists(lastpath)){
            stop("Error: last PATH does not exist. Please specify correct
                PATH and/or look into package installation prerequisites.
                Try to use make_last() function.")
        }
        if(!file.exists(paste0(lastpath, "lastdb"))){
            stop("Error: lastdb binary does not exist. Please specify
                correct PATH and/or look into package installation
                prerequisites. Try to use make_last() function.")
        }
        if(!file.exists(paste0(lastpath, "lastal"))){
            stop("Error: lastal binary does not exist. Please specify
                correct PATH and/or look into package installation
                prerequisites. Try to use make_last() function.")
        }
    }
    if(searchtool=="mmseqs2"){
        if(!dir.exists(mmseqs2path)){
            stop("Error: mmseqs2 PATH does not exist. Please specify
                correct PATH and/or look into package installation
                prerequisites.")
        }
        if(!file.exists(paste0(mmseqs2path, "mmseqs"))){
            stop("Error: mmseqs2 binary does not exist. Please specify
                correct PATH and/or look into package installation
                prerequisites.")
        }
    }
    if(searchtool=="diamond"){
        if(!dir.exists(diamondpath)){
            stop("Error: diamond PATH does not exist. Please specify
                correct PATH and/or look into package installation
                prerequisites.")
        }
        if(!file.exists(paste0(diamondpath, "diamond"))){
            stop("Error: diamond binary does not exist. Please specify
                correct PATH and/or look into package installation
                prerequisites.")
        }
    }
    selfblast <- FALSE
    if(cdsfile1==cdsfile2){
        selfblast <- TRUE
    }
    aa1file <- tempfile("aa1_", outpath)
    aa2file <- tempfile("aa2_", outpath)
    aa1dbfile <- tempfile("aa1db_", outpath)
    aa2dbfile <- tempfile("aa2db_", outpath)
    if(searchtool=="last"){
        aa2_aa1_lastout <- tempfile("aa2_aa1_lastout_", outpath)
        aa1_aa2_lastout <- tempfile("aa1_aa2_lastout_", outpath)
    }
    if(searchtool=="mmseqs2"){
        aa2_aa1_lastout <- tempfile("aa2_aa1_mmseqs2_", outpath)
        aa1_aa2_lastout <- tempfile("aa1_aa2_mmseqs2_", outpath)
    }
    if(searchtool=="diamond"){
        aa2_aa1_lastout <- tempfile("aa2_aa1_diamond_", outpath)
        aa1_aa2_lastout <- tempfile("aa1_aa2_diamond_", outpath)
    }
    if(longest.isoform){
        cds1 <- Biostrings::readDNAStringSet(cdsfile1)
        cds2 <- Biostrings::readDNAStringSet(cdsfile2)
        Biostrings::writeXStringSet(MSA2dist::cds2aa(isoform2longest(cds1,
            isoform.source), shorten=shorten1, frame=frame1,
            framelist=framelist1, genetic.code=genetic.code1), file=aa1file)
        Biostrings::writeXStringSet(MSA2dist::cds2aa(isoform2longest(cds2,
            isoform.source), shorten=shorten2, frame=frame2,
            framelist=framelist2, genetic.code=genetic.code2), file=aa2file)
    }
    if(!longest.isoform){
        cdsfile2aafile(cdsfile1, aa1file,
            shorten=shorten1, frame=frame1, framelist=framelist1,
            genetic.code=genetic.code1)
        cdsfile2aafile(cdsfile2, aa2file,
            shorten=shorten2, frame=frame2, framelist=framelist2,
            genetic.code=genetic.code2)
    }
    if(searchtool=="last"){
        system2(command=paste0(lastpath, "lastdb"),
            args = c("-p", "-cR01", "-P", threads, aa1dbfile, aa1file))
        system2(command=paste0(lastpath, "lastdb"),
            args = c("-p", "-cR01", "-P", threads, aa2dbfile, aa2file))
        system2(command=paste0(lastpath, "lastal"),
            args = c("-f", "BlastTab+", "-P", threads, "-D", lastD, aa1dbfile,
            aa2file, ">", aa2_aa1_lastout))
        system2(command=paste0(lastpath, "lastal"),
            args = c("-f", "BlastTab+", "-P", threads, "-D", lastD, aa2dbfile,
            aa1file, ">", aa1_aa2_lastout))
    }
    if(searchtool=="mmseqs2"){
        system2(command=paste0(mmseqs2path, "mmseqs"),
            args = c("easy-search", aa1file, aa2file, aa1_aa2_lastout, outpath,
                "--threads", threads, "-s", mmseqs2sensitivity,
                "--format-output", paste0("query,target,fident,alnlen,",
                "mismatch,gapopen,qstart,qend,tstart,tend,evalue,bits,qlen,",
                "tlen,raw")))
        system2(command=paste0(mmseqs2path, "mmseqs"),
            args = c("easy-search", aa2file, aa1file, aa2_aa1_lastout, outpath,
                "--threads", threads, "-s", mmseqs2sensitivity,
                "--format-output", paste0("query,target,fident,alnlen,",
                "mismatch,gapopen,qstart,qend,tstart,tend,evalue,bits,qlen,",
                "tlen,raw")))
    }
    if(searchtool=="diamond"){
        system2(command=paste0(diamondpath, "diamond"),
            args = c("makedb", "--in", aa1file,
                "-d", aa1dbfile))
        system2(command=paste0(diamondpath, "diamond"),
            args = c("makedb", "--in", aa2file,
                "-d", aa2dbfile))
        system2(command=paste0(diamondpath, "diamond"),
            args = c("blastp", "--ignore-warnings", "-d", aa2dbfile,
                "-q", aa1file, "-o", aa1_aa2_lastout, diamondsensitivity,
                diamondmaxtargetseqs,
                "-f", "6", "qseqid", "sseqid", "pident", "length", "mismatch",
                "gapopen", "qstart", "qend", "sstart", "send", "evalue",
                "bitscore", "qlen", "slen", "score"))
        system2(command=paste0(diamondpath, "diamond"),
            args = c("blastp", "--ignore-warnings", "-d", aa1dbfile,
                "-q", aa2file, "-o", aa2_aa1_lastout, diamondsensitivity,
                diamondmaxtargetseqs,
                "-f", "6", "qseqid", "sseqid", "pident", "length", "mismatch",
                "gapopen", "qstart", "qend", "sstart", "send", "evalue",
                "bitscore", "qlen", "slen", "score"))
    }
    aa1_aa2 <- read.table(aa1_aa2_lastout, sep="\t", header=FALSE,
        stringsAsFactors=FALSE)
    aa2_aa1 <- read.table(aa2_aa1_lastout, sep="\t", header=FALSE,
        stringsAsFactors=FALSE)
    colnames(aa1_aa2) <- colnames(aa2_aa1) <- c("query_id", "subject_id",
        "perc_identity", "alignment_length", "mismatches", "gap_opens",
        "q_start", "q_end", "s_start", "s_end", "evalue", "bit_score",
        "query_length", "subject_length", "raw_score")
    if(searchtool=="mmseqs2"){
        aa1_aa2[, "perc_identity"] <- aa1_aa2[, "perc_identity"] * 100
        aa2_aa1[, "perc_identity"] <- aa2_aa1[, "perc_identity"] * 100
    }
    if(remove){
        system2(command="rm", args = aa1file)
        system2(command="rm", args = aa2file)
        system2(command="rm", args = paste0(aa1dbfile, "*"))
        system2(command="rm", args = paste0(aa2dbfile, "*"))
        system2(command="rm", args = aa2_aa1_lastout)
        system2(command="rm", args = aa1_aa2_lastout)
    }
    #selfblast
    if(selfblast){
        aa1_aa2 <- aa1_aa2[aa1_aa2[,1] != aa1_aa2[,2], , drop=FALSE]
        aa2_aa1 <- aa2_aa1[aa2_aa1[,1] != aa2_aa1[,2], , drop=FALSE]
        if(dim(aa1_aa2)[1]==0 & dim(aa2_aa1)[1]==0){
            stop("No recirpocal best hits!")
        }
    }
    #apply standard filters on hit pairs
    aa1_aa2 <- aa1_aa2 %>% filter_eval(eval) %>% filter_qcov(qcov) %>%
        filter_tcov(tcov) %>% filter_pident(pident) %>% filter_alnlen(alnlen)
    aa2_aa1 <- aa2_aa1 %>% filter_eval(eval) %>% filter_qcov(qcov) %>%
        filter_tcov(tcov) %>% filter_pident(pident) %>% filter_alnlen(alnlen)
    if(rost1999){
        aa1_aa2 <- aa1_aa2 %>% filter_rost1999
        aa2_aa1 <- aa2_aa1 %>% filter_rost1999
    }
    #apply additional filters on hit pairs
    for(f_ in filter){
        aa1_aa2 <- aa1_aa2 %>% f_
        aa2_aa1 <- aa2_aa1 %>% f_
    }
    if(dim(aa1_aa2)[1]==0 & dim(aa2_aa1)[1]==0){
        stop("No recirpocal best hits!")
    }
    aa1_aa2.idx <- paste0(aa1_aa2[, 1], "\t" , aa1_aa2[, 2])
    aa2_aa1.idx <- paste0(aa2_aa1[, 2], "\t" , aa2_aa1[, 1])
    #deduplicate hit pairs and only retain the best hit per query
    aa1_aa2.dedup <- aa1_aa2[!duplicated(aa1_aa2[, 1]), , drop=FALSE]
    aa2_aa1.dedup <- aa2_aa1[!duplicated(aa2_aa1[, 1]), , drop=FALSE]
    aa1_aa2.dedup.idx <- paste0(aa1_aa2.dedup[, 1], "\t" , aa1_aa2.dedup[, 2])
    aa2_aa1.dedup.idx <- paste0(aa2_aa1.dedup[, 2], "\t" , aa2_aa1.dedup[, 1])
    #reduce to reciprocal best hits
    rbh1 <- aa1_aa2.dedup[which(aa1_aa2.dedup.idx %in% aa2_aa1.dedup.idx), ,
        drop=FALSE]
    rbh2 <- aa2_aa1.dedup[which(aa2_aa1.dedup.idx %in% aa1_aa2.dedup.idx), ,
        drop=FALSE]
    if(selfblast){
        rbh1 <- rbh1[!duplicated(apply(rbh1[, seq_len(2)], 1, function(x)
            paste0(sort(x), collapse="\t"))), , drop=FALSE]
        rbh2 <- rbh2[!duplicated(apply(rbh2[, seq_len(2)], 1, function(x)
            paste0(sort(x), collapse="\t"))), , drop=FALSE]
    }
    #if no crbh - done
    if(!crbh){
        rbh <- rbh1[, seq_len(2)]
        rbh <- cbind(rbh, "rbh")
        colnames(rbh) <- c("aa1", "aa2", "rbh_class")
        out <- list(rbh, cbind(rbh1, "rbh"), cbind(rbh2, "rbh"))
        names(out) <- c("crbh.pairs", "crbh1", "crbh2")
        if(!selfblast){
            attr(out, "CRBHits.class") <- "crbh"
            attr(out, "crbh") <- FALSE
            attr(out, "keepSingleDirection") <- FALSE
            attr(out, "selfblast") <- selfblast
            return(out)
        }
        if(selfblast){
            attr(out, "CRBHits.class") <- "crbh"
            attr(out, "crbh") <- FALSE
            attr(out, "keepSingleDirection") <- FALSE
            attr(out, "selfblast") <- selfblast
            return(out)
        }
    }
    #if crbh - continue
    if(crbh){
        #fit evalue by length
        if(!selfblast){
            rbh1_rbh2_fit <- fitSpline(c(rbh1[,4], rbh2[,4]),
                c(rbh1[, 11], rbh2[, 11]),
                fit.type,
                fit.varweight,
                fit.min)
        }
        if(selfblast){
            rbh1_rbh2_fit <- fitSpline(c(rbh1[,4]),
                c(rbh1[, 11]),
                fit.type,
                fit.varweight,
                fit.min)
        }
        #internal function to filter hit pairs using rbh1_rbh2_fit
        filter_crbh <- function(x){
            minuslog10evalue_by_fit <- lapply(as.numeric(x[,4]), rbh1_rbh2_fit)
            return(x[as.numeric(x[,16]) >= minuslog10evalue_by_fit, ,
                drop=FALSE])
        }
        #remove reciprocal best hits from hit pairs to only look into secondary
        #hits
        if(!selfblast){
            rbh1.idx <- paste0(rbh1[, 1], "\t", rbh1[, 2])
            rbh2.idx <- paste0(rbh2[, 2], "\t", rbh2[, 1])
        }
        if(selfblast){
            rbh1.idx <- c(paste0(rbh1[, 1], "\t", rbh1[, 2]), paste0(rbh1[, 2],
                "\t", rbh1[, 1]))
            rbh2.idx <- c(paste0(rbh2[, 2], "\t", rbh2[, 1]), paste0(rbh2[, 1],
                "\t", rbh2[, 2]))
        }
        aa1_aa2.red <- aa1_aa2[!aa1_aa2.idx %in% rbh1.idx, , drop=FALSE]
        aa2_aa1.red <- aa2_aa1[!aa2_aa1.idx %in% rbh2.idx, , drop=FALSE]
        #add -log10(evalue)
        aa1_aa2.red <- cbind(aa1_aa2.red, -log10(aa1_aa2.red[, 11]))
        aa1_aa2.red[is.infinite(aa1_aa2.red[, 16]), 16] <- 324
        aa2_aa1.red <- cbind(aa2_aa1.red, -log10(aa2_aa1.red[, 11]))
        aa2_aa1.red[is.infinite(aa2_aa1.red[, 16]), 16] <- 324
        #filter retained hit pairs with rbh1_rbh2_fit
        aa1_aa2.red <- filter_crbh(aa1_aa2.red)
        aa2_aa1.red <- filter_crbh(aa2_aa1.red)
        aa1_aa2.red.idx <- paste0(aa1_aa2.red[, 1], "\t" , aa1_aa2.red[, 2])
        aa2_aa1.red.idx <- paste0(aa2_aa1.red[, 2], "\t" , aa2_aa1.red[, 1])
        #deduplicate hit pairs and only retain the best hit per HSP
        aa1_aa2.red.dedup <- aa1_aa2.red[!duplicated(aa1_aa2.red.idx), ,
            drop=FALSE]
        aa2_aa1.red.dedup <- aa2_aa1.red[!duplicated(aa2_aa1.red.idx), ,
            drop=FALSE]
        #split into reciprocal direction secondary hits (rbh.sec) and single
        #direction (single)
        aa1_aa2.red.dedup.idx <- paste0(aa1_aa2.red.dedup[, 1], "\t" ,
            aa1_aa2.red.dedup[, 2])
        aa2_aa1.red.dedup.idx <- paste0(aa2_aa1.red.dedup[, 2], "\t" ,
            aa2_aa1.red.dedup[, 1])
        rbh1.sec <- aa1_aa2.red.dedup[which(aa1_aa2.red.dedup.idx %in%
            aa2_aa1.red.dedup.idx), , drop=FALSE]
        rbh2.sec <- aa2_aa1.red.dedup[which(aa2_aa1.red.dedup.idx %in%
            aa1_aa2.red.dedup.idx), , drop=FALSE]
        if(selfblast){
            rbh1.sec <- rbh1.sec[!duplicated(apply(rbh1.sec[, seq_len(2)], 1,
                function(x) paste0(sort(x), collapse="\t"))), , drop=FALSE]
            rbh2.sec <- rbh2.sec[!duplicated(apply(rbh2.sec[, seq_len(2)], 1,
                function(x) paste0(sort(x), collapse="\t"))), , drop=FALSE]
        }
        single1 <- aa1_aa2.red.dedup[which(!aa1_aa2.red.dedup.idx %in%
            aa2_aa1.red.dedup.idx), , drop=FALSE]
        single2 <- aa2_aa1.red.dedup[which(!aa2_aa1.red.dedup.idx %in%
            aa1_aa2.red.dedup.idx), , drop=FALSE]
        #if plotCurve plot fitting
        if(plotCurve){
            len <- rbh1[, 4]
            log10alnlen <- log10(len)
            minuslog10evalue <- -log10(rbh1[, 11])
            minuslog10evalue[is.infinite(minuslog10evalue)] <- 324
            plot(x=log10alnlen, y=minuslog10evalue,
            pch=20,
            main="Accept / Reject secondary hits as homologs",
            ylab="-log10(evalue)",
            xlab="log10(alnlength)",
            col=col2transparent("#8EBCB5", 50),
            cex=0.75)
            points(x=log10(rbh1.sec[, 4]), y=-log10(rbh1.sec[, 11]),
            pch=21,
            bg=col2transparent("#4D83AB", 25),
            cex=1)
            points(x=log10(single1[, 4]), y=-log10(single1[, 11]),
            pch=21,
            bg=col2transparent("#CBC106", 25),
            cex=1)
            if(selfblast){
                points(x=log10(seq_len(max(rbh1[, 4]))),
                    y=rbh1_rbh2_fit(seq(from=1, to=max(rbh1[, 4]))),
                    type="l",
                    lwd=2,
                    col="#9E163C")
                legend("bottomright",
                    legend=c("rbh", "sec", "single"),
                    col=c("#8EBCB5",
                    col2transparent("#4D83AB", 25),
                    col2transparent("#CBC106", 25)),
                    bty="n",
                    pch=20)
            }
            if(!selfblast){
                points(x=log10(single2[, 4]), y=-log10(single2[, 11]),
                    pch=21,
                    bg=col2transparent("#CB7B26", 25),
                    cex=1)
                points(x=log10(seq_len(max(rbh1[, 4]))),
                    y=rbh1_rbh2_fit(seq(from=1, to=max(rbh1[, 4]))),
                    type="l",
                    lwd=2,
                    col="#9E163C")
                legend("bottomright",
                    legend=c("rbh", "sec", "single1", "single2"),
                    col=c("#8EBCB5",
                    col2transparent("#4D83AB", 25),
                    col2transparent("#CBC106", 25),
                    col2transparent("#CB7B26", 25)),
                    bty="n",
                    pch=20)
            }
        }
        #if no keepSingleDirection - done
        if(!keepSingleDirection){
            crbh1 <- data.frame(Map(c ,cbind(rbh1, "rbh"),
                cbind(rbh1.sec[, seq_len(15)], "sec")))
            colnames(crbh1)[16] <- "rbh_class"
            crbh2 <- data.frame(Map(c ,cbind(rbh2, "rbh"),
                cbind(rbh2.sec[, seq_len(15)], "sec")))
            colnames(crbh2)[16] <- "rbh_class"
            crbh <- crbh1[, c(seq_len(2), 16)]
            colnames(crbh) <- c("aa1", "aa2", "rbh_class")
            out <- list(crbh, crbh1, crbh2, rbh1_rbh2_fit)
            names(out) <- c("crbh.pairs", "crbh1", "crbh2", "rbh1_rbh2_fit")
            attr(out, "CRBHits.class") <- "crbh"
            attr(out, "crbh") <- TRUE
            attr(out, "keepSingleDirection") <- FALSE
            attr(out, "selfblast") <- selfblast
            return(out)
        }
        #if keepSingleDirection - include single - done
        if(keepSingleDirection){
            crbh1 <- data.frame(Map(c, cbind(rbh1, "rbh"),
                cbind(rbh1.sec[, seq_len(15)], "sec"),
                cbind(single1[, seq_len(15)],
                "single")))
            colnames(crbh1)[16] <- "rbh_class"
            crbh2 <- data.frame(Map(c, cbind(rbh2, "rbh"),
                cbind(rbh2.sec[, seq_len(15)], "sec"),
                cbind(single2[, seq_len(15)],
                "single")))
            colnames(crbh2)[16] <- "rbh_class"
            crbh <- data.frame(Map(c, crbh1[, c(seq_len(2), 16)],
                single1[, c(seq_len(2), 16)], single2[, c(2, 1, 16)]))
            colnames(crbh) <- c("aa1", "aa2", "rbh_class")
            out <- list(crbh, crbh1, crbh2, rbh1_rbh2_fit)
            names(out) <- c("crbh.pairs", "crbh1", "crbh2", "rbh1_rbh2_fit")
            attr(out, "CRBHits.class") <- "crbh"
            attr(out, "crbh") <- TRUE
            attr(out, "keepSingleDirection") <- TRUE
            attr(out, "selfblast") <- selfblast
            return(out)
        }
    }
}
kullrich/CRBHits documentation built on March 29, 2024, 11:34 a.m.